0.5 DIFAKTMENS OF COKMERCE
Mctionsi Tockuicl loleation Sarsk

AD-AD35 (89

ARALVSES ARD SYNTHESIS OF AN TMPEDANCE-LOADED
LOOP ANTENNA USING THE SINGULARITY EXPANSION MZTHOD

AR Force Weapoks LABORATORY
Kirveanp Atr ForcE Base. Hew Mexico

Rovenser 1576




349058

AFWLTR76-182 - APWLIR
76182

ANALYSIS AND SYNTHESIS OF AN IMPEDANCE.

EXPANSION METHOD

November 1976

Fnal Report

Roproved Yor public velaase; distribution wlimited.

'}'C‘;

-
& .

e

3
"y}

m&m »
BRI R
AR FORCE WEAPONS LABORATOSY
Rir Force Systems Command
Kictland Alr Foroe Base, N 87117

LOADED LOOP ANTENNA USING THE SINGULARITY

e U

I, 5 AL A SO




ARIL-TR-76-182 ~

This final report was prepared under Job CUrder 12050509 with the Air Fouce
Weapons Laberatory, Kirtland AFB, YN. Wajor Ronald F. Slackburmn (ELP) was the
Laboratory Project Officer-in-Charge.

Wnen 5 Covervment drawings, specifications, or other data arve gsed for any
purpose other than a definitely rolated Govemment procurerent cneration, the
Governsent thereby iacurs no responsibility ner any oblication whatsoever, and
the fact that the Governwent miy hawe formylated, fumished, or ir any way
supplied the said drawings, speci fications, or other data is nor %o be regarded
by implication or otherwise as in any wanner licensing the holder or any cther
person or corgoveation or conveying any richts or perefesion to wanufacture, use,
or s21] any patentad invention that may in any way be rlated thereto.

This report has Heen reviewer by the Inforwation GFFice (D1} and i5 releas-
atle to the 'lationa? Technical Invormaticn Service {(MYIS). At YIS, it will be
available to the ceneral oublic, .ncluding foreion nations.

This tecimical veport kas besn vevisu2d and Vs approved for pwiication.

RIALD 7. BlLACEL

¥ jor, USAF » p
Froject ﬁf'ﬁﬁéff . / FOR THE COMRANDLR
A ‘d g
‘ ¢ P it C L‘ A‘J v
RORALD J. COVELLY ;\‘ams . ﬁ&;!& . JR.
Kajor, USRF Lolonel, USAY
Acting Chief, Fhenomecdicgy and “Chief, Electronics Bivision

Tachology 8ra«U‘\\‘,‘

00 w0V RETURN THIS £OPY, RETAIN TR TESTROY,

-




-] M?* BB osme Nglor, (SAF

) zi:—tsmé W. . &?m |

,Q tvmmumwu A ———

zhctﬁdty and Regnatise; Electrompetic Fialds and daws;. hmup tow -
e miuws Stagulerity xpuasion ﬁtboé :

| resvense vey be gynibeaiped, “TH
f Tty xpenston sethed (SEM) vay be used to sied “faantly simelivy the aake sulaa

Awsiysts akp svmEsts oF AN IRPEDRRCE-LONED 5 Fiagl uum
.,‘wmsmmsmwmm .

-

- SRR SSAn T Vior 4 M D AODRIEE
Adr. Fzmn WNewpons Laboratory (ELP)
firtiand %. NN 8NnY i EATRYF: 1:U9GERD

| Xy Foree Wsipons Labomtory 'ELP)
3é*§

§
{
L

1IN mm«ﬂanmwm i , i gw T Save
i
§ . .
;%T‘_ﬁtr.ﬂ*vmﬂ&wmw

CLASSIFIED

NL‘

Revoved for mblic release: distribution @iicited,

3 Awwswrcwvsmm “f

ﬁ‘fﬁwwga Y Qsmmmtk nmms czn T t*ﬁau‘é sa’*sﬁt.am!v *y veing oF
2 static or Haady-stite wirtximntica, Uwre ve ar Incressing ﬂwéi*’ v?’ tyofe
Tedw 10 shtch the teangig=s q:i\avicr ts of parement femortance. & conilrying
| e witsts to handle these cwoblees effictantly dnd in sugh 2 hay t?m: 8 wlge
range OF responsEs to dive q; HBLTE vy ba congidertd or thet the desirec

e Durecse of cnis work I3 o shvw atw the sincye

i

3

!
]

&

-~

-

tion m& s@ﬂﬁsii af ‘w it of 8 tr!wsit*?#r 3:0&3 sHSghna tad'a'! By ge

oD .‘..,‘ u’ﬁ mmv 'muwww m(l;gsgtvcn

-y et v.ﬁc"';gt xhu-.. ¢ Teiovwy

-

\‘ ‘-




2,

] |
i N L JMm fezTErED -
;\ \ SRS WY CLASRPICAT Sw OF Thik PAGE WG Date Taveredd '

~Jelectromametic pulse. Faralleling the well-knowun description of luped circuits
in terws of thuir poles and rercs, ¢ cospact representation of the locp antenna
in tomms of its poles and zeres fs derived. The resylting time dowein descrip-
ticn of the Toop response is sioply 2 sum of terse inwclving the resicues, the
excization, and the exponentially damped sinusoids whose complex frecuencies are :
the frequencies at which radistion from a scatterer or antenna can take stace ‘
without an appliied excitaticn. One cbiective of this research is io investicate
the possible use of the singularity expansion method to synihesize radiated time
domin waveforss by uniformly tcading a lcoo sntenna. In particular, one wishes
te choese the loading st 35 to vealize stwe cdesired pole-zero configuration on
the structure. ™It ¥s shown thet the effect of the loading can be inlerpreted as
introducing a Yeachack loop inte 2 block diagrew represantation of the irgecance
transfer function. This cbservation pereits one to use the roet-lecus lechnijues)
well-known in the srea of feedurk contrel thapry to predict certain features of
the pole trajectories s the lcading 7s continueusly varied. Furthermmore, the
pole positions for a given iwgedance lcacing can e found with the aid of conttun
, piots of the samitude and phase of the irpedance transver fmctior. (Cabining
5 the uso of the abowa sachnigues for the anslysis f loadirg 2cgether witn the
: singuiarity expansion representzéion, we extend 20 electroracnetic groblens 2
capabitity 26 possibly synthesize the decived response when the input or excita.
tion wevaform is given.
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IRTRODUCTION

A3though theve are many elsztrosagietic prodlms
which can be treated satisfactorily by mesws of a static
&r 3teady-staie sporoximation, there are an increasiug

agaber of problems in which the transien? befiavior is of

“paramount inpartarce. These problems are usvally diffi-

cult because they pose the prodlem of solvirg the field
sguscions 38 Tunctions of both time snd space.

& fow electromagnesic scattering and radiation prod.
fems can be analyticalily solved directly in the time
dowain, Howsver, for most problems 3 direct time domain
sclution generally must be obtained by numsericel methods.
These mathods sre, at best, tedicus to apply and are
often glagued by stability preblenms.

& commonly more Fruitful spproach to obtaining
transiant Fiald solutiens is t¢ first trausfors the tige
put of the Fflecld equations., Most engineers are fomidtiar
with this transform technique. In this wethod the tiwe
dependence s transformed out of the field equations by
either & Fourier or Laplace transform., The transformwed
equations are furctions of space, with freguency appesr-

ing merely &s & paremeter of tae problem. The problen




is then solved in the frequency domsin either amalyti-

cally or nuserically using, for example, 2 woment wmethod

technique. Once this steady-state solution of a problem

kaz been cbtained, it is then relatively simple to cbtaia  ;$

the more general solution representing the response of i%
the cbject to an impressed field varying ardbitrarily with h
time. This is done by Fourier inversion of the spectrus
of the solution quantity weighted by the spectrum of the
excitation.

For solutions cbtaianed cithevr by time narwonic anat.
ysis coupled with Fourier inversion or by direct tige
domain techniques, 3 chenge in the spatial or tewporal
behsvier of the excitation roquires that coasidevabdle
effort be spent in recalculating the response o¢ the
structure. One is Yexd to ask whather or wot the lor -
establiished descriptivn of lumped civeeits in terms of
their poles &nd zeros wight also be used to provide &

wore coupact representation of electromagnetic fleld

probless. In the cise of electrical netuorks, specifying

the finite nuuber of pole and zero frequeacies of a mets

work quentity (impedance, trinsfer function, etc.} coxe
pietely daterwiaes the quastity at all fregquencies.
Furthermore, the tise dousin respoase of & Yinear circuit

excited by anm arbitrary waveform may be detavmined froz



knowledge of the location of these neole sirgularities of
th2 response function in the complex freguency plane, as
well as their corvesponding resfdues. The resplting tiwe

dosain description of the circuit response is simply a

LA LBV o 5L AR A BTl P, S 250 W PN € o

sum of terms involving the residues, the excitation, and

the exponentially demped sinuscids whose complex fre-

quencies are the pole frequencies.

The techniquss of circyit theory sre Lased on the

assumptions that path lengths in the cirvcult are neglible

and that atl electric and magnetic fields are essenticlly

confined to the cirvcuit elements. Field theory, on the

other hand, wust dea) with fluxes in two Or thves space

disensions. Givew thet cirvcult theory actually hag 13s

founcations in field thwory, one wight suspect that cir-

cuit theory technigues should have analogs in the ¥ield

theory.

‘hat the pole-zero techniques of Jumped circuit

tkory can inde.d be extendesd tu slactiromamnmatic scgtinur-

fng was recognized by C. €. GKauw [1] who forsiiired the

singularity expansion wethod (SEN) as spplied tu genevs'

scattering problems. In his approdch a8 coaducting

scatterer 15 describad in terws of an integril equation

for he '‘nduced surface current demsity., The inverse of

the intecral operator s then axpanded 'n terws of its

K L 2u% s W PP e Kinn g e b
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poles &nd their operstor-valued resfdues. The civcuit
equivalent of this approach 1s the expansion of the
fnverse of the impedance mstrix of an n-port aetwork into
3 partial fraction representatton in terms of the poles
of the network and their matrix-valued residues. Thus in
SEN, field theory is no longer considered to be something
apart frow circuit and transmission iine theories, but
rather as extensions of these concepts. Quantities which
uest be kacwn for the expansion cof the scatte-ing operator
{i.e., the inverse of the fategral operitor velating
induced currents to scatteved fields) in tevas of its
siagelarities are the natural fraquencies, eodes, and
coupling coutfficients.

Yhe astural frequencies dre the freguencies ai which
radiating frow & scatterer or antesna can tske place wiihe
out ar appiied excitation. In other words, the aatural
frequencies ore the poles of the structure. We see fomedi-
ately that the poles wust be elither in the left Kelf o¢
the s plene or ca the imaginery axis in ordar to éxciude
flelds which grow exponantially with tima, Poles ow the
isaglnary exis, hdwever, correspond to undaeped sinuscids
which taerefore cannot lose en.cgy B radiation. Heace,
poles on the iwmagingry axtis of the s vlane must corre-

spond R0 Yaterfor cavity resoasnces wnich do not radiate




extarior fields. The usual stausoidal steady-state
resonant frequencles ot the structure are appronimotely
the imsginary parts of the complex pole frequencies.

For certain response quantities, it is possible for pole-
zero cancellation to cccur. In these cases, the natural
frequencies do not appear explicitly in the vesponse
fusctione of the antenna.

At each pole frequency there {s an associated wodal
curreant distribution. Generally speaking, as & complex
excitztion freguency appreaches a matural resonance free
quancy, the current distridution aporoaches that of the
wodal current distribution associated with the pele, One
ts Ffamiliar with this behavior fa, siy, dipole antenmas
wheve at resonance the curvent disteibution is approxi-
sately & sinusoidal standing wave with the anusber of nodes
sppropriate to the electrical lengeh of the anterns. The
suplitude of the current depends on the difference in the
pole and excitation sfreguencies as well as 6n & coupling
coefficient which velates the euxcitation to the proportion
ef & given wode which 1% excited.

The oljective of thiy research s to Investigate the
possible vsa of the singuiarity expansicn wethod to
synthasize vidlated time domain waveforms by vniformly

toading 4 1oop aateans. In particular, we with to choose
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the loding so as to realize some desired pole-zero con-
figuraticn on the structure. Since synthesis desfgn is
usually carried out in practice by iterated analyses, we
approach the synthesis problem by First butliding up an
array of tools for analysis. These include & rather
c.tensive set of tables for the poles and residues of
unicaded loops. The data in these tibles peréit one o
calculate either the time domain or the freguency domain
response of a loop over 3 large frequency rauge for an
arbitrevy excitation. A product expansicn representation
of the ‘Ycop “traasver admittance® function is then
devived which pereits the rapid calculation of maquityde
dnd phase contours for the transver adwittance. Flots
of these contours, in turn, yield inforwation on the
shifting of poles shat is possibie by fmpedsnce loading.
kddiag furthor iusight into the prodlem of determining
the poie shifis are extonsions of the vost locus teche
nigques comoniy used iu comtrel thaory. The extensions
geruit the technigues to be used fn the present srabiem
ta wiich theve sre a3 countadbly infinite ausber oY poles.
With the combired use of the above techniques, some
progress 15 wadée toward the developmenl of an spproach to
the synthesis problem. As in circuit theory, the synthey's

procedure wey begin with either of two Gi*ferent siurtiag




poiats. In the first, the synthesis problem is considered
solved when the transfer function relating the response
quantity to the excitation has specified poles and possibly
specified residues. In the case of the lcaded loop, this
beccmes a problem of requirvinyg the loading impedance
function to interpolate the unlcaded loop transfer imped-
ance function at the pole frequencies. If the residues

are left unspecified, it is also possible to determine
whether or not the synthesized loading function is positive
veal.

The other starting pofnt sets out to solve 2 more
difficult but eore practical problew. Heve cae is given
the tiwe dowain vesy nse and excitation waveforms and
asked to synthesize the Voading function reguired to
approximately achieve the desircd tive domain response.
in this ciése, the poles of the resuylting structure uay
not even be needed, depending on the syrthesis algovithe,
It s emphasized that the elecivosagnetic synthesis prob.
Tew has an additional complication <hich does not have an
gneloy in Yusped circuit synthesis, This iz, of cou se,
the timd Solay dssociated with the gecuatry ¢ the struce
t: . This prodbiem i beyond the scope of this work and
f. 5 anticipated that further development alony these

vines will reguive soee approximation of an infinite

B T



nuasber of poies by time delay factors in the transfer
functioa.




CHAPTER (I
SINGULARITY EXPANSI{GN KETHOD ANALYSIS
OF THE UMLOADED LOOP

There exists 8 continuing need to handle electro-
stgnetic transient problens efficiently and in such a way

that a widr range of responses to differing inputs may be

considered ov that the desired respoase may be synthesized.

The purpose of this discusstom 75 to show How the siacue

lerity expansion method (SER) s»y be used to significantly

siaplify the calculation and synthesis of the vespanse
of 3 transzitting loop entenna excited by an electromag-
netic pulse. The frequency domain vusponse of a loop has
been extensively treated in the Titerature (21, (3], [4).
dfu good summariss of thase treatwents, with socme exten-
sfons, eve civén by King and Harvisen [6] and Ring (8].
in the Following, we werely susmirize the theory of
Wu [4] as given by King and Harrison [8). Raferrsl is
mide to the latter for détails of the derivetions,; end
thetr notatioa is Cenerdlly followed. UWe have sppropri-
ately extended the theory of Wu {d] into the complex Frew
quency or, equivalently, the Laplace trans¥ors domatn.
Although thesa resuits DY Ue ovolained mévaty by the

substitution s = juw in Nu's equetions, we present bvelow
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tne derivation for reference purposes.

The usuval methed of zpproaching the problem is to
write an integral equatien for the current induced in the
toop which ifavolves the driving voltage waveform. Because
of the ratationa! eves-try of the l20p, Fourier analysis
of both the excitation and the current permits us to
derive 3 "transfer iazpedance” relating these Fourfer
couponants. The modal transfer impedance is just the
vatio of the corresponding Fourfer components of excita-
tion (voltage) and current. These transfer impedinces
contain both the frequency and ceometrical dependences
of the loop.

2.1 Suswavy of Wu's Theory for an Unloaded Loop

Extended to Compliex Frequencies

fa the following, the derivaticn of the solution for
the curvent on a conducting Toop antenna - suemrized
fotlowing closely the presentation of King and Harrison
(5], As shown in Figure 1, the center of the lToop coin-
cides with the origin ¥ a cylindrical coordinete svstem
detoted p, ¢, and 2, with the pisne of the loov lying in
the piane 2 » 0. The radius of the Yoor b is assuwecd
such lartevr than the wive radivs a. Furthermove. the

vaiue of 3 s seall cowpared with the wavelength, i.e.,

ot ce b, |kal? <2 (2.1)

10
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The value of I(¢') is cbtained from a» integral equation
cbtained by inveking the boundary conditions. The appro-
priete boundary condftics s that the tangeattal electric
field must vanish at the surface of the lcop. The value
of the electric fleld impressed across & delts gap
generator Vocated at ¢ = 0 {¢ Vﬁ(s). If the structure is
tupedance loaded, the sum of the voitage drops across the
iupedance wust aiso0 be included. For a unfformly loaded
structure this is casily accemplished, since the voltage
drop per unft length (i.e., the efectric field) is werely
proportional to the current at the sive point. Consider-

fng only the unloaded case here, we have
volslele)
Q(S).HM‘ ‘("1‘?“2’55);9'&

4 o 3¢
, {2.2)

¢n the surface of the wire at ¢, whare the scslar sad
vector potentials at the element dt » bde are given by
-

6wl | qle’) W(e - ¢') de €2.3)
dwg -

, |
j 16') Ule « ¢') cos (o - ¢') de* (2.4)
CX |

b
[
T

Danoting the speed of Tight by ¢, the kernel iy defined by




L1

=$tic
g § - r
wheve
rw Vab® sin® (¢ - 9')/2 & A?
and

k= 2¢ sin (v72)

(2.5}

{2.6)

(2.7)

Ie {2.8) and {2.5) the & component of the surface dansity

current éeiéi is assumed £ be uniform around the wire,

§{¢) is the otal current,

I{¢) » 2xa d el

{z.8)

- where, because of (2.1}, the v-directed coupoaent of

surfece currast J¥ fs i%Su&éﬁ to be wagligitile.
the voltage excitation is givea by |
L] )
S Moy
! BE s ¢o v v (s)

By tae squation of comtiuuity,

ead 1t follows from (2.10) and {2.3]) that

3 al{e Eow{e - ') de’
3¢ Gtasﬁ o' 3¢’

13

Note thet

{z2.9%

(2.10)

{2.11)




Integrating Equation {2.11) by parts,

w
¥ . i :
3"‘“ L S 1{e') W{z2 - %) de' {2.12})
3¢ dwesbt 3¢t J

and substituting (2.12) and {2.4) into {2.2}, one abtains

<
v » jﬁﬁ [ "
Vis)a(e) = -2 j R{s - 0') 1{o7) do*  (2.13)
éw
]
where ¢ mew kernel K{z - ¢') is deflped as

R{® = ¢') » -} {- cos {3 = '} -
€

s
L
.
and
E >
e

W o - 2'), defined by {2.5), way be expanced ir & Fouviar

seriys
Wig = 2") = 37 & (e} ™Mo ¥ {2.1%
-3 )
The K, may be evaluated in térms «¥ wla o 37}, yreliing
«
SV i L. in{g.a'} o
kﬂts) - i~ Wy - '} e““e‘ ¢ de » K*5{s§
&
{2.1%;

Using the results of {2.15) snd rawriting (2.14), a

+

simple exprassion s obrained for (s « ') where




k(e « ') = ¥ o (s, e-Inle-e’) (2.17)

ang

-jsk o). ded
2. (s) = fgfzu- (Rner{s) * Kaq(s))- 45E (5] = a_ ()

(2.18)

[fwue et 9= ¢ « ¢" and A = 23 sin (9/2), the determina-
tion of the 3, depends upon the evaluation of the coeffi-
cients in Equaticn (2.18). wiich, with the definition

“(2}) = r/b, may be rewritten in the form

di ;
R{8} {
{2.19) '

4y:

¥ - o -
jnd _-sh/c Rle)
K (s) = = | av j‘ St
-

-
Rs shown by Wu, Equation (2.18) may b= spprexiestely
written ia terms of Tntegrals of Anger-Keber fynctions

for unrestricted n, as

.1, 8 B
Ka(&) - In =2 .

L a
i
L 8,(X) d& + § J,(x) dX (2.28)
2
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Koo(s) = E (s} = %» Ky (ﬁi) I, (?5) e,

[Baa(X) *+ 335, (00] o
(]
vhére § « -J2sb/c and lc and E% ere wodified Besgse!
functions of the first and second kind, rvespectively, and
vy s Euler’s constent. The constast C, s defiued es
n’f‘] ‘

“ ' b (2w + 1 ( ;

Using the sbove vesults, (2.13) reducez to

%

&E§R(¢‘9‘§ 1{e’) de*

g =
\‘v"‘zms(oiwﬁ ¥ oa,ls)
¥ e

. {c’f tggs

Expanding the above curreat n @ Fourler sevies, cne ke

ig(e) « 5 1,(s) @739

-
wheve the xu(sﬁ cosefficignts ave given by
1

TR B TTSIP L (2.28)
L O |

-

Combinfng the results of {2.22) wnd {2.24), we obhisin

1]




xy in .
Volsible) = =2 3 ay(s) L,0s) €73 (2.25)
This s a Fourler series with the coefficients (jnaiﬁ)
0,(s) 1,{s). The coefficfents are obtained by using tae
properties of the delts function,

Snga is)io(s) ¥ v¥(s)
— Lr v‘:(s) se) 3% ¢o » 2

e v
Finally,
-3¢ty
Ials) « ot (2.27)
n e, (s)

waere thy coafficient -3/[n va, ()] of VE(s) eay be
i¢gntified a3 the transfer adefttance of the n'® Fourier
conporeut of current. la the following we vepeatediy
refer to this quantity ss the “transfer fuction” ur
 traasfer adeitRance. Its reciproce) i5 celled the
“trausfer ispedance.”

w




2.2 Expansion of the Traansfer Admittance in Terms

of Its Singularities

To calculete the current, or equivalentiy, the traas-
fer impedance of 2 loop antenna, we have had to solve the
corresponding field problem--thit s, we kave solved
Haxwell's equatfons subject to the boundary conditions 2t
the syrface of the antenna. Having thus obtafaed the
transfer adeittance for the loop antenns, we aext study
its properties to deterwmine the correspending bestc
properties of the loop antenna. NHowever, sose of the wmost
important general properties of the anteana ﬁranéfer
dduittance way be obtained frow mucy wore basic ceusidera-
tions. These properties are commo)r to all dynawical

systeas--machanical and acoustical as well 335 electrical

.stteus. and they ave independeant of the particuler fore
of the equations as long s these equations ere linear.

Such properties were considered by Brune (7] with
spectal reference to electric networks, dut thase results
are castly exteaded to all Vinear dymamical systems
including systeus with an infinite nusber of degrees of
freadom.

The natural oscillation constants of any pesgive
phystcal system, that is, 8 system without concealed

sources of power, must lie either in the left half of

8




the complex ¢ plane or ¢a the fuaginary axfs; othervise,
the veal part of the couplex freguincies of ésci!!atieu
would Be posttive, and tie osciltiticns would grow fa

- swplitude without any contrituticn of poier by the systes.

An anteard fo frae spece 1os¢s powsr by radfstics,
shother its terwinails are short circufted or lefi “loating;
hauce, the poles of 1ts transfer aduittence eve fn the
teft helif of the s plena. ?hu'eu!y exception s the point
at the orfgin. This point corresponds to & static field.
Recoguizing thet the solutions of slectromsgaetic
probless ore wnalytic %uacﬁieas of the cowplex frequéncy
$ except at these pole singulavities {complax netural
 frequodcies of oscillation) is the basts of the sfagularity
“expansion eethod (SEW) {umtroduceud by Saua {1). 8y
expanding the transfer admittasce in o partla) frection
‘saries, one nceds Galy the poles and their vesidues to
completely determine the trassfor fumction ¢fther in the
 time or the Vrequéucy doasin.
Cae of the sdvantages of the stngulavity expansicn
1igﬁt§ad_¢s colipared o other wore cosventioas) wetieds s

Cthat it provides « wasns of charectarizing the electro.

L segeetic properties of @ body with & discrete set of

cosplex musiaes together with a set of wodel curreat
“oéistributivas.  Theve quantities are untquely determined

v



by the body ftself ané do nct depend, for example, on the
driving scurce. OCnce these quantities ave kncun, a wide
varfety of antzama probiems can be solved without having
to re-solve tui boundary value probles. The singularity
expansion method is therefore usefu! for two reasons:

(1) it provides paystical insight into the problem end

(2) 1t reduces an electrosagnetics problem o the winiwmus
nusbsr of quantities necessary to completely represent
ft.

The anmaiytic property of 1/a,(s) with respect to s
alicws the use of various theorews of cowplex variabdles
in obtaining faforeation about its properties. The Lasic
{dea favolved in this techafque is to expand the transfer
fusction of Ya, (s) ia terss of its singulavities in the
complex frequency plane. Such singularities can take
verfous fores such as poles, brench points (and assoclated
braach cuts), esseatisl singularities, and singularities
&t tnfinfty. For a restricted class of obdjects, which
imelucas the Yoop antenas, these s-plane singularities are
Haited to poles and possible singularities at infinity.

Once one has found the complex natural frequencies
of cscillation and thetr corrvesponding current distribye
tiocns, ft theén rvemains only to determine to what extent

cach @8odal curveat is excited by a given Fourler component

&0




¢f the isput waveform. For the leocp antenna the sxcita-
ticn of each modsl current s proportional to the product
of the restdue of the transfer admittance amd ths‘iiﬁiﬁﬁl
transfors of the corresponding Fourier component of the
excitation. To determine the natural frequeacies of the
loop, it is necessary to find the poles s, of the trans-
fer admittance factor 1/a (s).

To do tuls, one cbserves fn {2.18) and (2.20) that
au(s) is analytic for &1l s for n » 0, and for all s
except s « 0 when n # 0. This fapifes that 1/a (s) s
analytic for all s except possibliy for poles st the zeros
of a,(s). Therefore, since & (s} vanishes at these zeros,
say s,5, I,(5,4) B2y be nonzero with V (s,,) « 08, t.e.,
no excitation is required at the natural frequeancies in
order to have a current. Thus, at the pole Frequencies,
we have source free solutions of the iategrel ecuation.
Urgashkankar [8] hes shoun that

— e B u (2.29)
aﬁ(s} S = $.4

f.2., the trensfor adeittance can be written entirely s
¢ residue sevies invelviag its poles s, end residues @“i.
This 15 the desived expamsion of the transfer admittance

16 tevws of 83 sipgulavities.
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By our defiaitton of the pole frequencies, we have

Sai)® gugn,  4als) * 0 (2.29)

[ 1
o

$nd the corresponding residues Ry dre giver by

-1
Rut * gonny L 1) | [% (2.30)
"oagis) ds

ni

From (2 30} the R.. can be written &s

Ry ™ lliéi(sni) (2.31)
uhere
da i
' n
&' s L. (2.32)
n ( ni) s
s « 9“1

Using (2.28) in (2.27), we way write the ath Fourier

coaponent of the current a&s

R
1 s i \
iu(s) . SO P L $:($) (2.33)

Jﬂut i 5 - S“i

The eGuivalent expression in the time domatn is

o , "I"it e
1,(¢) - Zi, Rag @ Jae v (t) (2.34)




where

1
' B e - 2&35)
Rni jﬂo'ﬂ ﬁ“

and R;i &nd Syg Wust appear in complex conjugate pairs in
order for the tise domain respouce to be veal. Tae stav
fn (2.34) deaotes convolution.

Expression (Z2.34) faplfes that poles must be in the
Teft halif plane to avoid an exvonentially increasiang
current &s a function of time. This s explained phys-
fcally by the fact that source free currents must sven-

tually radiate away &)} their energy: hence
1.(t) 5520, 0 # 0, §,(t) ggorconstant  (2.26)

Naking use of (2.23) and 2.27),

o) » L 1,(s)79"¢

-y

b

lo o2 i‘ “”‘1 (2.37)
139(53 i J

@
) ~jva{s}

Ny?

Expandiag a“(s) in its partial fraction representation, we

hive finally

23




- » R
+2 % fcosne ¥ ni {2.38)
nsl . isl ¢ - sﬂi

Equation (2.38) 1is for the c2se of an antenna excited at
¢ *0 by a delta gap. In the mare geners! case, the
excitation can be represented by an arditrary incident
field E;"c(e,s). Fourier expansion of Ez"‘(e.s) allows
the derivation to proceed as for the case of an antenna
and the resylt is

Vg

' jué inC,,.. “jﬂe' .

Ryy @ EQ o'.9 e bds
0

I(6es) » ¥ : »
n,i $ - s“i

{2.39)
The terms *Jne are called by daum [1] the modsl currant

distribations, end the terms e"j“*' &re the coupling

vactors. The quantity

o
o 1 N - 6' RPN |
1, (s) ',{ €10 (6,5) @™ bag (2.40)
0

is celled the coupling coufficient and indicates how m:uch

of each mode the fncident field excites. The S,y dve the

24
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poles or complex naturs: rescaant fregusncies.

134 v§ is equal to urit for freguemcies s « Ju
in (2.37), then I(¢,ju) i¢ the current response due to a
unit voltage source in the real frequency dosafn. Hence
I{0,ju) is the input admittance and 1/1({0,ju) fs the ifaput
{upedance of the entemna. Hence, if a particuler pole
is close ¢0 the imuginary axis, the igpedance at rea)
frequencies fn the vicinity of this zevo is small, and
we have the phenoiencn kacwe 2s resonance. If seversd
soles ave near the iwaginary axis, the iupedance wiil
fluctuste between .xkall and larvge valves as the frejuency
passes these points As the poles vecede from the imygie
nary axis, the fluctuations becune lYsss pronocunced, aad
the “resornance curves” beccme fliatter,

An.equivalent circuit can be develvped representing
the field eguations of Mawwell for 2n electrosagnetic
field contsitning conductors snd boynd charges. 8Both
transfent and sinusoldel field phencmxena may thus be
studied by numerical and analytical circuit usthods;
such & oircult codal appliies, of Zourse, to radistion
from a Voop antennd [9). The circuit msdels cen in
principle be developed for all zurvilinear-orthogonal
reference frawes o allow the solution, to sny desired

degree of accuricy, of any tuwo or three-dicensional

B 2 G s o e




probles. The models correspond to the approximation of a
trenspission liae in one dimension by a cascaded series of
sections containing ordinary lumped civcuit elements R, L,
C. and G's, Since the field equations of Maxwell mey thus
be represented by a stationary network (within any desived
degree of accuracy), it may be stated that [9]:

Any theores, formula, concept, or law that

is valid for stationary astworks zsueh &8s reci-

procity theoremxs, Thevenin's theorvem, concepts

of dualism, reduction formulas, ceneralization

postulates, e#tc.) can be i{rensiated into 2 core-

sronding theorem, formula, come2pt, or law

relating to the electromagnetic field.

Rs the nuzber of elemgnts in the circuit increases,
the nusber of poles alse increases. As 2 consequence of
the above circuit wode) of Haxwell's equatiuns, contine
wous structures, includiag a1Y of free space, &re s1mils
of metworks with &n increasingly larger nusber of
increasingly swallier seshes. The nusber of thelr zevoes
and poles will be tafinite. (In Fact, this aust be true
of any physical civeult sinve o1l physical clircpits ave
centinuous and cannot be wholly disassoctated from the
surrounding space.)

Thus, theve are an infinite nusler of complex
vesciznt frequancies whose Tocatioms ave in the left half
of the complex frequsacy pline, and which cccue in comples

conjugate pairs as & consequence of the above theoves.
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In order to gencrate a real-time-domain response, poles of fﬂ

the transfer impedsnce function wust asppear in compiox

conjugate pairs snd their vesidues wmust be in complex
coajugate patrs for poles not on the negative real axis.
It is thea recognized that the transient response
of an object can be viewed &$ a superposition of & series
of damped sinusoidal oscillations at the so-calied natural
frequencies of the object. It has been chserved iw sahy
electromagaetic pulse (ERP) scatteving and intevaction
probiess that the tiwe dependance of various guantities,
such as the current fnduced on an object in &n EBP simg.
tetor, jeems to be describad by only & few ¢¥ these
exponentially demped sinusoidal oscitiaticas{l]).
2.3 Wumerical Tecaniguas end Results
The expresiion ¥or a,{s). (2.16) 2o {2.21), tnvolves
fntegrals of Aager-Weber Vunctions of complex argumants.

These fuactions have been cemputed gsing am exteasion

to complex arguuents of the methods described im (10},

A peremetric study of the roots of a,{s) as & Function

of the ratio b/a has bees cavried out using a numerical
sedrch procedure. The roots, of course, satisfy the
requiresent that they should sppear oaly in the left kalf

of the s plane end fn couplex comjugate paies.

Yhe so-caited Kuller’'s Wethod has bewm used to i
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nrumerically determine the roots of 3,{s}. In this method
Dree valyes of an(s) are corputed from three astimates

of the root, say at $he2* Sp.pe 3nd s, Using these
values, a quadratic fnterpolation forwyla [1i} is used

to approxinate an(s) in the vicinity of the given points.
The root of the Guadratic nearest the bost estimate, say
Sy is designated $he] NG the procedure 15 repeated using

o -3 > ! ;
Sn.tr Spe Speq until s e !Esn5 ts less than a

asl
presasigned number. For more details, the reacder fs
referred to reference [11].

Approximate pole locaetions %o initialize the sroced.
ure are not aecassary, though in practice having qood
fnitial estimates of pole leocations will considerstly
reduce the number of ftevations reguired to find the
verious rodts. This searching procedure is n geners)
found to be Quite efffcient, but it has been found to be
rather difficolt to find ail of the poles in certain
recions when good inttial estiestes are unavailanle.

Ore sethod which has been amploved to cvercome fhts
difficulty s to sctuatly plot wagnitude contours of the
function e ohe complex s plene. The regicns nesv zeros
of &g(s} $how up clearly om the gantour o6t and provige
Rore accurate inftiglizimg uata for Myllar's Nethod,
Furthermora, the contour plots thesselves are useful in

determining the poles of the Yoaded siructure, 35 we shal?




sae in Chapter Iil.

The residue for /e, (s} wmey be easily cafculated by
tie vresidue theoves using a clircular contour &bauf the
pole a3 shown in Figure 2.

By the resfdue thesren, we have : .

1 ds g =
‘.! . W wé A (2.“:3
ni

2w “eaq n s)

Jia Figure 2, fet
§ = Si fd Gﬁjeo £ = Si + EE'N

ds = jeed® 6 (2.82)

and substiruting (2.42) inte (2.41}), we have

56
Ryq ® = T (2.43)
2w C“iaﬂ(s)(sni + ee )

For a numarical aspproximation, we s®ay divide the coatour,
ﬁni iﬁzs % ¢gual subdivigions and apply the simple rectan-

gular rule for integretion:

®

Rai = ?; 15:
aw a“(s) Sy ¥ ce@

¢ 2n-11%/8 (ouim)
} 2{n-1)u/mr

{2.44)

Thus the residuc at the pole " ad for a“(s) 13
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fanteur in t-plane for caleulsting residues

2.
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e

Figure




u of 2ln=)e/m

Ry =3,

2 ael n“(s)[%, + ol z(“']""}

(2.45)

Is equation (2.28) an fuportant feature 15 that the func-
tion 17a,(s) say be represented by its poles and reéidws
with no additional entive function requirved, as showa by
Usczhanker [8].

Several checks were mace to dctermine the rete of
coavorgence of (2.45). The value of ¢ zas varfed from
10~ o 10°° while stsultanecusly the value of o wes
variad frou 3 to 24. 1t was found that for the combina-
tiom of ¢ « 10°% aad w » 3, sccurste ansuers with &
relative evvcy of the order of 1077 were obtatned. A
large munber of these poie Tocations s * S . and corre-
sponding restdues R, have been calculated and tabulated
for a wide rauge of the loop pavaxster @ « Zin{(2+b/a).
These vesults perait cne to use (2.34) to calculate time
duusin loop curreats Tor svbitravy excitation without
rasorting to the cosparatively fuef¥icient process of
fourter transformatica.

By divect calculetion we find fn the coxplex fre-
quency plisea &n Tafinite nunber of cowplex rasonant
frequencies whose locations sujgest three sepavate cate-

gorfas of resonant frequency orv pole types ¥or esch wode

i




sumber x:
There 15 a sfagle pole very wear the s » ju ;ais at
asproximateiy » » o, This pole gives the principal con-

tribution to the time domaln response of the loop at late gg
tines and the Inaginary pert Of thy pole locetion corre- ;ﬁ

- sponds closely to the rescaant fregusucy of the loop for %%
an excitatioa of the form ¢9°%, ;3
Tipe i1 e
There sve vl of thesa poles (Including coajugate %%

getes) which Ve roughly cu the left-kRend side of an
eifipge centered at s = 0 and with & seuigajor axis some-
what Targer than u,

Type 111

A f&&rﬂ is 2 layer of poles lying almost paraliel to

* s » jo sxis.  Vhe layer coateins an infiaite nuzder
of roles and they eve spaced agproxfustely 4w = we/b
waits apart, where b 1s the loup radfus.

&% with thts cyfiadrical wires, incvezsiag the wive

radius Gac the effect oF shifting the Type ! poles aesr
| the ju axis away frew the axts, oy squivelently, iacreas-
| tug the damping constants of those dodes (n the time
douate [12]. Yypes II and IIf poles located further

tuay froe the twagiaary axis, Aowever, wove dway from the

ﬁ




fmaginary axis as the radius approaches zero.

Pole and residue data for tihe three loop sizes
2= 2232«b/a = 16, 15, and 20 are presented in Fiqures 3
through 8 and Tables 1 through 8 for modes n = 0 through
«0. For a perticular mode, Type II poles fall ca an
eliiptically shaped curve with n + 1 poles {iz2cluding
conjugate pairs). There will be ore more pole (Type It
at approximately < » n. Displayed in Figures &, 6, and 8,
corresponding to 2 = 10, 15, and 20, vespectively, are
the layers of Type Il poles parailel to the s » ju axis.
These poles are shown for each xode O through 2¢ for
values of wb/c » 0 %20 ub/c = 30.

The residue corresponding to cach of the poles
plotted ta Flgures 3 through 8 are tabylated in Tabies 1
thecugh 8. These are tabulated in three columas for (he
three loop sfzes @ « 16, 15, and 20. The first number {n
each coiums represents the rea! value of the residue, and
the second s its imaginary value. The index {s & usfgus
four-digit wusber that identififes @ pavticular pole. The
first two digits are the wode number ¥or wodes O through
20. The tast two digits -an be grouped inte three di Ffer.
ent categories corvesponding to the thrae different types
of poltes. A doudle zero (00) in the last two digits of

the index correspunds to the single Type I pole very near

33
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Figure 3. Natural frequeacies of circular loep,
Yypes | and 1!, § ¢ 10.0
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Figure 5. Hetura! frequencies of civcular loop,
Yypes I snd I3, € = 15,0
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tht-éﬁlc axts at approximately w » a. Type Il poles.
wifchk vary {n nuaber according to the sode nuxber n, hive
fndices, the last tuo digits of which range from 01 to as
kigh s 1.

For cxasple, for @ = 10 mode 20 (Figuve 3), the
{adex numbar 2000 represeats the pole at (-1.08, 19.96);
2001 represents the pole at'i;l.f7. 21.82); 2002 the pole
&3 (-5.70, 16.90); and fimally, 2011 the pole at (-13.66,
6.0). For a given wode, an increasing nuaber in the last
two index digits woves aloag the elliptical arc friw near
 the «b/c axis toward th@,éégative real axis fn a counter-
ciockuise wanaer. These Tirst two Sypes of poles have
besn plotted fn Figuwes 3, 5, and 7. The thkird category
<? snles, Type Iil. contatng an nfirite number of poles
lying .imos. pgrailel to the ubifc axis. Only the poles
such that wo /¢ < 30 2ve tabulated. Again, the Flvst two
étr ts of the ‘=dex musber represent the wods number;
BOWEYER, Love th0 T tun Adgits a1l begin with 3,
desoting po’ g of = hi-4 eype, These raage froa 31
Up o &5 Miek 25 5, For exawple, for § = 10 wode 0
(Figure €). tue talev uuaper G031 represents @ pole at
(-0.65, 3.76); 0032 veprcionts @ pole 2t (.0.93, 7.05);
aad GOY9 a pole at (-1.15, 29.46). Poles ia this layer

are nusbered seguentially beginning with the pole having




the smallest {maginary part and proceeding away from the
o axis. These Type Ill poles are plotted in Figures &, 6,
&nd 8.

Usashankar (€] notes that asymptotically for Type III
poies there are nly two sets of roots, ore set for evem
mcdes and another set for odd sodes. The convergence to
these two sets of values for the lowe: orders can be
readily seer In Figures 4. 6, and &, =hers for fncreasing
values of s along the wb/c axis all Type III poles con-
verge, regavdless of xode, to one distinct set of values
for ever modes and one for odd modes. Ia Tables 1 through
8 1t can b2 seen that for relatively large values of s
the resicdues follow the same pattern. For lavge s ail
even Zodes tend to the ssme residues reqardless of zode:
stailarly for all odd wodes.

These tables of patrs of complex nuxbders répresenting
the poles and vesidues of the aduittance transfer function
ére uaiqualy deterwinaed by the loop geometry, independent
of excitatien. They provide, through the partial fraction
expansion of the adeittance transter functions, & aeans of
accurately chevacterizing the electromignetic properties
of lcop antennas for three relatively diéfereat siczed
anteniiss through wode 20. The representation of the tiwe

dosein respanse im tevws of the poles 1, and resfdues Rni

L2Y

o

ol




yields time dncain resglts which compare well with the
Fourier traasforas of frequeacy domain data. However, a
comparison fn the frequency dowain of the integral reprec

sentation and the partial fraction representation of the

transfer admittance function at the same frequency fndf-
cates inat the latter representation does not appear to
converge to the correct result. This fs fllustrated in
Figure 9 «here the partial fraction and integral repre-
sentation of Ilao(Jw) are cospared. One notes the
apparently constant offset ({n the imeginary part, which
should be zerec at v = 0. Siace 2 constant would repre-
sent an additional entive function added to the partial
fraction expansion, this prodliee was studied in some
detafil,

An obvious possible source of error uoulc be that

the Sy 9ad Rﬁ{ ugre not being computed 2o surficieat

accuracy. The 2arly vesults were computed using standard
preciston arithmetic on the CDC 6600 with 14 significant
digits of accurtcy. The Aager-Neber function caiculation
was evalvated by usvaa an alternating series expamsion.
To check ‘or roundof¥ errors, the entire routine was
rewriiten for doudle precision which carries 28 sfgnifi-
cent digits, The new routine was checked agatnst the

orfginal, but the troublesome Ywzginary valoe at the origin
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rensined virtually uschanged.
One resvit of the conversicn to double precision was
the extension of the range of the argument for which the

Anger-ieber fuaction could be accurately calculsted. This

peruitted poles Spq 20d residues Rni to be calcuiated inm *fjf
the vegion |ub/c| < 30.0 in the s plane. Using the result |
of LBJ. the asymptotic formula was also used to cespute

Spq and R g for values near ub/c = 30.0. In the regfens

where the two calculations Sould de cumpared, soma small

ni
énd Rnﬁ calculated using tie series expansion method and

differences were noted betwcen the accurate value of s w

thet coaputed using the asymptotic formula. It §s cer-
tainly true, then, thal for values of Shi 306 Rog in the
vange of ub/c from 30 up to possibly several hundred,
swall errors are introduced by the asyeptotic foreulas.

At ¢ = 0, the partiel fraction series hecomes
1/a (o) = - Ei: Ryi?Sni (2.48)

where the serfos wust sua 20 zero to have the correct

value, [t 15 easily seen that ervors in Like poles and
restdues will give lia“(s) the wrong behavior near s » 9,
Forshermare, dividing the partial fractica series into

those terms whose poles and residues are coxputed frow




the series representation of the Anger-Heber functicn and

these computed from the asyeptotic formula, uwe have

R
WVa (s) = L —al
’b $ - 3“1
-
Ial;ﬂi—.s 30
\ ¢ |
+ X — (2.47) i
Sy LY L
wi-2ils 30 =
(4 oo

i

-

The Tast sqriec< for the range of s = j~u, consideved in

Figure 9, can be approximately replaced by

. R
5 Al (2.48)
f Sni

L <))
Iﬁé;ﬁiw,b 39

W

since s s susll coupeved to ¢ Errors 1n these tervas

Bt
would oxplein the constaynt offset showa a Figure 9. Adde
fay further uveight to this arcuuwent 1s the Fact that
stwilar plots of 1laﬁ(s) for other values of n in the
sake range of ¢ show the saow nearly constiant offset, the

value of the coastant being independant of n. This is aot

surprising, however, when cae racails thal 16s aiyaptitil



formula predicts the sawe set of poles and residues for

&11 oven n and another set for &1l o0dd n.

in order G slieviate the convergence difficulty im
the s doazin, an infirite product representation was used.
The product representation hzs the agvantage that both
the poles and zercs of the function are automatically
facivded in the vepresentation. A further advantage of
this formulation is that the residues R,; 2re not reguirsd.
These expansions for iian(s} are devived in Appeadix A
and are given by {2.49) sné (2.50):

e . (2.49)
a8} nue Kg {0) ;ﬁ: [(i - sfsi) a(Sisi;}

th

Tor v ¢ 0 vhere the 8; ave zingularities of the n™ wode

&nd K is evaluated at s equals zero;

. :f — NSV LSOO — {2.50}
8080 gy gyto) T Hi - s7s,) e(sisiyl
s | ’ J

when n » O or where s, arve the siagularities of sode zeve

dad K; 15 evaleated ot s eguals revro.



Ancther calculation of llaG(s) usfrg (2.50) appears
in Figure 9. The offset in the imgginavy part is coa-
pletely =liminctad. By reformualtiing the problem, the
ccastant offset has disappeared, and the agreewent of the
serigs and product vepresentaticsne 2:3d to vaifdate the
sccuracy of the calculated $ui It {s therefore concluded
that the poor convergence of {(2.28) 1a the freguoncy
doazin is dua to smalil deviaticas in the cemputad location
of the s . and values of R . for wd/c > 35.0 in the s
plane.

The product expansion provides a rapid and sccurate
weans of calculating the valuves of 1/a (s) in the cosplex
froquency plane, whereas the Laplace iaverse of the
psrtier froolion expansicn g uweeful aad sccurate Ya the
tise domein, Thase tuc representations provide the
necessary tcols to accoudlish sl required calculations
for the Yoop antewny accurately and quickiy.

Gre further quastion remiins concerning the poles
8, for the unloaded loop. it has been pointed ocut that
the third category of poles, i.e., the ones pavaileling
the fwaginary axis ix the s plane, do not cirresponc RO
similar poles of either dipoles or spheres. Scme specu-
Tation has been wade that thes2 poles are due to the thin

wire approxisations used to derive the transfer functions

| id

R S RN




v o s

a,(s). One should keep in mind, however, that such struc-
tres as dipoles, spheres, and prolate spheroids zre
toprlegically identical in that one structure can be
continucusly deformed inte another and that as such, there
Rust be 2 one-to-cne correspondence of their poles. This
correspondence is determined by aoting which poles nerge
into those of a sphere, say, as an object is centinuously
daforwed into a sphere. The loep, however is nce topo-
Togically equivalert to a sphere, hoewever, because &
sphe ‘& without handles can never be deforwad tato a leoo
and its poles do not necessarily correspend to these of

3 spheve, 7o test this hypothesis, 2 method of mozents
selution for the » » 0 eode current induced in & toreids)
antenns oF 0 o 10 was implemented, Tie sethemetical
derivation of the ﬁntsgrai equstion togethar with the
Puarical considerations ave contsired in Appendix 5.

Basically, the Joop is trsated as a conducting tovoid

divided up ints 8 large nusbar of curvilinear patches. »
The wire circumference wids ¢ .ided into 24 zeaments with
the current gssused to be uniform in ezeh sogosnt, Since
fn Bu's solution the Function iiae{s} s propeortional to
the total current for & yniforemly oxcited wire, in the
=omant scluticn the current demsity on the wire was

integrated to fiad 2he otal current under the concition




PR ey .

¢f gniforu excitavion of the satire wire syrface. The
total current found this way corresponds to !/aois) “nd
the contour plots of t.e curreat should yield the true
poles of the T00p {within mcmeat mathod approximations).
It was found that in order to cenerate the regquired
values for filling the watrix, oore computar time was
required than expected. Consequentiy, it was recessary !
ts emslivy 2 minigum number of voints in tke contour
generation scheme ‘n order to keep the r2quired computer
tige within reascnable limits. The resulting transfer
adudgrace for mode 9, QO = 10 is shown in Figure 10. ‘e

will sy on Sxapter {11 that by comparine phase and

wagnitude values near the ima: ‘nary axis for the method
of noments and the prodyct expansion [Figqure 11), one

finds nearly the same pole structure. The poles Sei ©f
Type !!I are not only present, byt are in approximately
the came locaticn as sredicted. However, a set of z2ros
in the tecd! current lies interspersed with the poles in

8 zigza,; fashion punning paraile: to the imaginary axis.

This et of zevos in the tota! current {s caused by

curface curreats which flow i1 opposite divections on the

inside and autside oF the wire such that the total cuyrrens

¢ zero. Ia 2d4ition to the zeros, there is alsc 3 secend

layer of pcle-zerd pairs which parallele she Firse, h1rle

57 :
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Figure 10. Impedance transfer functior obtained by wethod
of wowents for n » 8, 0« 10.0
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this layer has such lerge damping constants that ft has
aggligible contribution ia the tive and froqueacy domain,
its appearance is interesting, nevertheless.

The satrix detercinant, of course, would not have
the zeros, but in order to pict the determinant, the
deasity of pofints calculated would have had to be increased
by 10 tc 100 times. This is because the appearance of
the zercs of the determinant were found to be extremely
focalized in the s plane.

No attempt was macde to generalize the moment mathed
prograa to iavestigate the Type IIl poles for wodes
other than n = 0, but it is expected that they, toe, do

indeed exist.
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CHAPTER III
AXALYS!S OF THE ULIFORMLY LOADED LOOP ANTEXNA

The amalysis of an unicaded ioop an* "na has veen
presented in the previcus chapter using the singularity
expansion method. In the preseat chapter, the effects of
uniforaly leoading a2 conducting loop are considered. From
the point of view of the sincularity expansion method,
the lcading mevely shifts the location of the scles of
the structure. [t is shown that contour plots of the
transfer impedance defined in Chapter [! may be used to
find the snifted pole positions and to deteraine what
shifts are possible. Furtheramore, it is shown that the
effect of the loading cen te interpreted as fatroducing
a feedbuck loup intc 2 Hicck diagrae representation of
the fwpedance transfer fumcticn. This cobservaticr eraits
one to uss the root-locus technigues well-kngwn in the
area of feedback coatrcols tc predict certain features of
the nole trajectories 2s the loadine is continuously wvaried.
Finzlily, representative time domain calcylations for the
szep response of a lirear antenna are oiven for various

values of purely resistive Jcadinag,
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3.1 GCerivation of the Adsittance Transfer Function for
the Loaded Loop
Consider uniformly loading the Tooco with an ifepedance
I (s) total tmpedance around the loop or Z,(s)/ast
impedance per unit length. The boundary condition on the
loop is that the tangential electric field equal thne
product of the total curreat and the impedance per unit

length. Thus the iategral equaticn (2.2) is replaced by

_ I, (s){s v, 3{s)
13, .a)s L(s)fe) . 0"

o am— P

3 (3.1}
& 3% 2=bh b

Expanding &, ha' aad [{s} as im section 2.1, we have

in i -jn& Z&{S} -inas F)
=¥ 8, 1, e v Y e ﬂ-‘feﬂ;!) {3.2)
2 nes 2% o
which can be written as
a ot ‘Szl »n
&.:1 2-‘ .an-..-....:. }n =Jns a Vgi(c,} 13.3}
2 ameQ} whw

a fore which pevsllels (2.25). Hence corresponding o

(2.27), we now have

© s

o

T,

PR,



ve
ln(S) o 2d G(S)
nw an(s) - jZL(s)Itbn

(3.4)

s0o that the adafittance transfer function ror the lcaded

logp is

=3 ] (3.5)
ny an(s) - jtl(s)It%n

This transfer function has poles at frequencies § =© séf

such that
3, (sai) = STy (sae)/0n (3.6)

or equivaliently,

30 (sai)] §3L(séi) /%bn (3.7)
teafaa(spd)] = arsfr(aa)] 000

whave the prime distinguishes quantities defined for the
toaded loop frow those definad for the unlcacded loop.
The arguxent given by Ugeshankar {8] for the expansion
of the adeittance transfer function applies here also

and results in the partial fraction expansion
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! o 3 -Ei"r- (3.9)
e,(s) - le(s)/tb T s -s.;

The residues Rﬁi in {3.9) above are easily found to be

¢ ! ;
“at BT (3-10)
§
i
| where g
Vet Ve O ! i
“a(sni) as a“(S)Bs-s;f (3.11 é
T -ff‘-.- zL(s;gs's. (3.12) f
; S i
| g
The fovm of the portiul fraction axpansion i (3.9) above .
. is {dentical to (2.28) but vith prised gquantities replacine
.5 uaprimed guantities. WHence the discussion of the time and
? Ffregueacy domain ~urveat rwsionse 'n Chapter I1 apolies to 5:
% thae loadcd Toop as well. |
E 3.2 ULse of Contour Piots to Represcat Poles of the 1
i readed Loop 5
% Equations {3.7) and (3.8] fadicate that contowur plots o
1
;

¢* the awgnitude and phase cf &"Qs) {m tul compliex freguency :

siane would simuitancously be plots ¢F the magnitude ang

€3




phase (skifted by 90”) of the norselized impedance loading
reguired at aach point in the coxplicy frpnyency domain in
order to have & pole theve. Using the product expamsion
formuias {2.39) 2rd (2.56), amd fncluding all poles in the

range

|18 (spqbrc)| < 200 (3.13)

wagnitude and phase coatours of the a,{s) are plotted in
Figuves 11 through 21. These figures are fov wodes n = 0
through n = 20 for & = 10.0.

Tie zagnitude Yines m = constaat in the figures deter-
wine the contours of coustant zagaitude of &, and the
nevealized fepadance Yoading according to

N
g TR L I
T~ s gan(s)% S ia ubﬁAi {3.14)

The phase o in degraes is civen for I,{s) &rd is related

to the phase of au(s) by

¢ arg{ﬁtts)] - ergi&a(s)i ~ Sg° (3.15)
A nuader of cbservazions coacerning the coatour plots
ave sppropriote. Oae aotes, for ianstance, that only ae(s)

R4s 3 pole st s = O; for 411 cther anés}. s = § is tihe only

LS LA e




[ A . o : S O A B PV SO S

e . N P - . L]
> mmme e B W s * pros "
g , e T o t :
\ . ’ M / / , 2 < S I
e g ! 4 :
/\x\f iz Y b 'S W‘» A Ny ¢ m ol
\ , L < e 25 . k -~ ; . "y MW
11““ 12 . g k ol -
‘. J( L2 2 rﬁ’%’ }f@ - / . , W
‘ g R i fd < 3
= . & "t
- . - P
- " Q
J J
, ]
el s s e s et i :
P “Sami g s B i e, L ol ] , 1?\ - P
33 HH e B s Rt 2
A ttt fdem LT TR S So
S o § &nv. ”mw
€l % e
) [ 1
" 3 .
fes . -
| ] »3
, 3 e
o £ o
E 3 &
3Ti 3 -
&
- | g
b TS .m.
v v » p 7. F

]%g
100
8901
&0
4.0;
29
1Y




v,

iy,

N eedes gers

i e stpesic

.

-

et

frer oo e e

aoier

?.Tnpv_!. =3

3

100

s

« 10.0

Phage ¥nd magnitude contour plot for

31,

Figure 12.

85




W i

G 5

3

60

401

Phase and eagnirude contour plot for

-
Ve

H

D

Figure

* 19.9

-
o

Q2

5




T!,L e~
b oo
<
<y
3}
k.

oo A

]

1

HY

agnitude contour plot for

4y, 5 ¢ 33.‘0

Phase and

Figure 14.

€3
2+




C @R e -

Wt e,

st

S e

(e d

—

L DT e

10.0

R T

gde contour pliot fov

+*
-

¢ magni
« 13.8

-
.

Phase an

iig

Figure 15.

63




A

il@fi L .‘w'?; RRNN S
E‘CE -60 -4.0 -2.0 0.0

-l
€

Figyre . Phase and magnitude contour slot foar

8¢, o » 10.0

I




s Lot I A IE R g B m Rt e e s +

B AL RV

o
o

] 3

-2.0
y

-&.0
&

~
.
-

-0




ab - - -
& 6.0 40 2L 00

Figure YE. Fepsge o2 mpueiiuge toetsur Dhe foe
cy e =

8oy % to..

. &




B L LR Rt S, R E RS S

ot

| it i Co.

¥

-40

e

« 310.0

-
b

7
Phase and nagnitude comtowr 33

Be

E

1004 35
%73
8
!
@4
Tl
¥y ¥
.
RAD
Figure I3,



30 % 3 »
8
i00 /q | »
L
[ 8
80 I~ ,"900 >
.
60 _
N, ‘
4.0 )
2.03[“
1
Qegf ey 1 '
-€0

Figure Z0. Fhase and magnitude contour plot for
2s, 2 = 10.02

i i s




-

Lontour

uge

»
-

I Ei B

]

<q
25 amg rwaand

4

€0
¢
2

Z!

g e s A ies e o T




zerc of the transfer impedince. Furthermore, one notes
that at each poiat on the contour plot, we simply read coff
the magnitude and phase the irxpedance should have in order
to have a pole at that peint. This fact is very ieportant
ance iz expioited in the next chapter in synthesizing the
loop response by choosing the pole locations. When the__
Teading function ZL(s) is given (1.e., in the analysis
aroblem), some additicnal effort is required to ¢raphically
‘ind the pole locatiens. What is needed is & separate
contou: plot of ZL(S) using the same complex frequency,
eagnityce and phase sciles, Then by overlaying the two
plots, ioci of common magnftudes and phases can be drawn,
Their intersecticn will be the pole positicns for the given
1¢ading function ZL(s). Yote that thic would have to be
done for every =oce, . * 2, i, 2. . . ., Decause the 'gac-
inc affects all peles.

fne notes that 1t is oossiplie to shift moles into the
r.sht half plane, but this could only be Zome with active
lo2ding. ‘Giowever, generally speaking, Ficures 11 through
27 indicate that the heavier the lcading {that is, the
targer the megnitude of Zi{s)§ the lsrcer the darting
corstant daconmes for the shiftad pole. (n3 shouid recall,
aowever, %hat in Figure 10 in Chapter 1!, which was ceme

suted ysiag moment methods with no ¢thin w'-e assurdticns,
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one finds ia actuality & layer of zeres just beyomd the
first layer of poies for mode n = 0 aad that heavv load-
ing shifts the peles toward these zeros rather than towa.d
infinity. A similar situation wil) probably exist for
higher order modes.

Finally, it is noted that the lines where the phase
is zero on each plot correspond to purely resistive lcad-
ing and that if the resistance is frequency independent,
then the pcles will all be on the same =maenitude contour.
Further, note that the Type ! ocle (at s = 0) and tke
Type Il pole {on the necative real axis) for mode n = O
approach each other with increased resistive locading,
fore 2 double pole on the negative real axis for 3 certain
critical resistance, and then split into a complex con-
Jucate pair with increased lIcadina. The dorinant Type !
pole for mode n = ) approaches the negative real ax:
with increased resistive loading, forms 2a deuble poie
there with its conjugate pair, and then the two poies
soift apart and xove away from each other aione the necs-
tive real axis. Thase are the oaly two cases “or which
dominant {Type !) poles cowrbine with other poles to fyrr
2 doudie pole. At either of these loacing ccecngitions,
ene may call the anteana “<~isically darmped.” The tralec-
Y

tories of the domimant poles for modes n = 0 to » = !

with resistive loading only are shown in Fisyre 22Z.
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3.3 Feedback Interpretation of !mpedance Loading and
Root Locus Xethods
The relatica between the excitaticn ang the Fourier

cozpeaents of curveat fo. the unlcaded oop,

. ¥8(s)
I, (s) = o | _ﬁii. (*.16)
w 3,(s)

aay be represented in block dizcrae form as in Figure 23.

The corresponding relation for the lcaded loop is

- ¥ (s)
(s} = =& 2 (2.17)
ny a“(s) - 31L(s}lzhn
n 3 3 ,Q,;
5 1ot 015) {3.18)
.ﬂﬁan(!ﬁ) . 5-3.;3:-
-3 j ©

which can be represented in the block diagranm of Figure 28,
One sees that the effect ¢f the leoading is to 2dd a Feed-
back loop into the unicuded loop transfer functios which
shifts the poles ¢f the oviginal unloaded systew, This

interpretation of loading as adéing 2 veeddack pain perwits

tod

one to use the techniques of comerol systes theery 3130

to snalyze, fov examole, tne effect of Tesddack on the dele

9
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locations and their sovement 33 the feedback {lcading)
chances. Ko discuss in the follguing the use of thke root
Yecs Lachaique of control theory [14) as apolied to the
1ea€c® loop,

in order to 2ppiy the root locus techaiques, it is
convertent to think of attainiang a certain given unifore
loading Zl(s) by toading the loop with a unifors fmpedance

Ezlfs} vhere the real constant K s varied frox E = 0

{corvespondéing to an unloaded loep) to K = V' {corresponding

to leaded with the desired loadina). To comsider infimite
iosding, we merely let K tend to infiaity. Thus the loco

transfer function for a2 given lcading Ezi{s) is

ts) = | ‘ : )!vgisi (3.19)
5 i, 1S
(jn,ra,,(s}) v B -

- )

The poles of the system are now those frequencies s v 5.,

such that

(ﬁntin(s}) * K Z,{s)/b = {3.20

Shausi and Kelly [18] have generclized the root Yocus
techaigres of contrcl theory te hagndle characteristic

enuitisng of tac fore
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for distributed parawmeter systexs where F;{s) and/or F,{s)
can be written in an infinite product expansion. If one of
the factors Fy{s) or F:{s) cannct be written as an infinite
product, then it must be a rational function. Eguation
{3.20) is of the form {3.21) and since a, (s} is expandable
in 2n infinite product expansion, we only require

that ZL(s) be a rational function (i.e., Zt(s) as a "lurped
Circuit®) or have an infinite product expansion I (s} in
3 gistridbyted parareter system). The raot locus rules
given by Gbhausi and Kelly as modified to apoly 2c the
gresan? problem of a loaded leop are given below {181,

STRET AND TEAMINAYION

b

The loci start (B = {} a2t the zeros of a _{s) anc

terningte {k = =) gn the zearos 6f 7, ¢

.
3
-

53 & varies froe=

f—

S

\U¥BIZ 2F LaC!
Since 3,is} is 2 trancendantal fie¢tion, tners ave ar

iafinize ausber of logt.

The gt facluge MIse sesticms of 4mQ resl axig fmat
(e 2o the left of an odc sumber ©F rerds oF 1 "¢ ars

18 Sor K positive amrg to the gt oF sr gvem eepar 3¢

K




the zeros ¢f the twe functions for K neqgative.

uhen a portion of the real axis between two successive
zeros of a, (s} or two successive zeros of I, {s) 1s part of
the root locus, there will be a particular valye of K for
which there will exist a second-order root on the rea!
axis. This roct is known as the breakaway point.

SREAXRAYAY POINY

The points at which the lo¢i break away fror the rea}

; 2xis are found as solutions of the equatign

e~
nd
FJ
t3

St

3,132/ (s) = a {s)Z {5}

ANGLES QF ARRIVAL &ND DEPA%TYyRR

1f 5,4 is & sizpie zero of g,{s), the angle of cevar-

ture 0f the locus from s . 15 given dy

; ni
: .
b “r isQ%) i - oy
: 36 AR I B - e 03,23
5 ¢ aﬁ(sni)
: 1€ 5. is & simple gzerc of I, 15!, the &ngle of aretval of
@ - -
: the lccus at s, iz giver by
)
;
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INTERSECTINIS “ITH IWAGINARY AXIS

For K > 0, the intersections of the loci with the

xis occur a4t those values “e for which
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When Equation (3.29) is used, care should be exercised
regarding the sign of K that has been eiiminated. As written,
the eguation define: the lazci for hoth nositive and necative
valves of K.

3.4 Step Response of a Resistively Loaded Loecp

Figure 25 shows the step »2soonse Yoop current com-
puted by taking the Laplace Vnverse of {2.33) at ¢ = 126°
for a2 resistiveiv lpaded loop with Zi = QL = 500, 1800
and 5400 ohms. Fipgure 26 shews the pulse resnense at
the sewe location with zL z RL = 600 and 1800 chms for &
puise width equal to U.7% ct/-b. Noncausal pscillations
can be ceen in the time interval near ¢ » { hefgore the

first signal arrives &t the observation point. The fre-

guency of the noncausal escillations correspends te the

3

Tyea [ sole of the fFirst Faurigr mods apt iazluded $n the

pre

curreat representstion, as @xpected. The various discev-
tineytigs in the resoonse come frow the First Lurrent

nulse which arrives at the observation point, the currant
which travels around he lgnaer path from the source o the
chserval oo ooint, the second trip sround the loon, and 55
Ofi. Mote that for this Yooo, G » 135.0, the value of

QL * 5400 corressonds 1o @ Scritically damped” losop.
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CHAPTER IV
SYNTHESIS OF THE RESPORSE OF A LOOP ANYENHA

In the previous chapter, various technigues of analysis
have been develoged end aralytical foreylations governing
the electrovagnetic behavior of loop antennas have been

g¢arived. These technigues and results are, of course,

]

E]
-

essential in determining the respemse nf a Yeoap

i

ieana for
2 given excitation and specified iwpedance lsadinz, 1

the foliowing, we desonstrate that scme ¢f the results can

P

3150 be used to change the resonant freouencies such tha
far 3 proper excitation (or inout), 2 desired response
{i.e., current or radisted field) might be obtained. Ykys
we obtein, using the singularity expansion representation,
2 ®2ans OF extending to an electrowavnetic problew & cEps-
bility that s well-developed in network theory-~the gbility
to synthesize the desired response when the inoyt o»
axcitation waveform iy given.

e ¢hiy chapter the anglytic properties of the
adsittance trensfer vusaclione discussed in the previous
chapter are enplicyed to forruylate the synthesis probies,

Scme oF Pha cancldaveriane and svabless 'viaive (e g

me“t‘ry ti‘e»ég"gﬁ syﬂthﬂ%%s wil\ be q]’ﬂ;ir‘tﬂd By 05595

thece Fundawenial synthesis techniques on some simple

38
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example probiems.
4.1 Formulation of the Synthesis Problewm

Suppose that one is given the voitace transfors at the
s8¢ vﬁ(s}. and one wishes to find some response guantity
such as the current at some point om the loop or the fisld
@t scwe point in space. Them for each Fourier cowponent

of the current, there will be a2 transfer funciicn ?n{s?

“3
aly

eiedy thet Fourier component to its zontribution to the

[

b
e

respense &t the observation point. The total chserved

[m ]
[, 1]

respense Y{s) is thei just the sum

=

® A} { 3
¥{s) - Tals) L {s) {¢.1)

e

N* v
For exawple, Tf the current at a doint o s desireq, ?n{s}
® ejﬂé, wheveas for a figid noint, the transfer funciioans
T,{s} can be obtained fro- Aopemdix £, Using (3.4) for
the cyrrent, we cbtain
. 2, \

; e
¥is) = o S .

ng* av-= g (5} - §2,{s)/"dn

-
T
r3
L

if we aAtsvee thai the inpyut Vﬁ{s} is given and henge fixed
and that T e} Henorsn ool Ga lee eeTIENLL gwanilly we
wigh to observe, the cdesfred response way be chtained only

by wanipuylating the adwittance trensfer function by

82
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impedance loading. Ne may do this as in ¢lassical network
theory by prescribing both the poles and the residues of
the 2dmittance transfer function. The relationship between
the l1oading fynction and the peles and residues has aiready

been described in the previous chapter, Namely, 7rom (3.6},

the condition for 3 pole 3¢t 5= s;i is
7 ' \ T oiw ? 5
“L(Sni) Jwbnan(sni) {2.3)

and from (3.10) the condition on Lhe resifue requires that

) R N O (4.4
Ry

¥

“n
the syathesis probles is that of requiring interpoiation

where is the desired residue of the shifted pole, Thys
conditions on EL(S) and ity derivative at the desired pole
pesfeions, [f the residue §s act of particular inferest,
then the conditicn on the dervivstive can be relaxed.

One notes that this s not the usual conditien
required of the gdmittance tramsfer fup-*lon fn the cir
cutt theory context. Vhere, the poles and residgues {or
reros) of the desired functicn zre those of the response
function. In the problee posed by (2.2} and {4 .4}, on

the other harnd, the poles and zeros of the functien €2 be




synthesized, Zi(s). wiil not be those of the response
fynction.
4.2 Censtruction of the Impedance Loading Function
We initiaily begin with the simplifving gs3ump-
tion that the impedince loaling funct:: is t5 be synthe.
sized using only Tinear lummed circyit aloments and devices.
Since we are uniformly loading the loop, we may, for example,
use many electrically small Tumped circuits in series with
andé uniformiy spaced arsund the lood so as to &pproxingte
continuous unifore loading. Nith the lumped circuis
requivement, ztisi Bust e eéither 3 polvaomist $n ¢ or
¢ ratienal Functien; that is, a ratio oF two polynomigls
in 5. Stace a polynemis? is siegleor, we congicder 18 Firge
Suppese we have N poles we wish to svathesize so that

the condition own ztisé is of the form
:L{sn) * ZLn* n i, 2, . .. s § {6*:3?

where we sssure that in the sequence 6f poles sy, s,, . . .,
Sy - ¥ any pole is complex, fts comdlex conjugste counter«
pert is inclyced in the sequange. The polynomial of

Towast order satisfying tha interpolation coudition {4.8)

fe tomstructed using the Lagrange polyaoriate [1s3

,’"
- 5 0 fey 1§ gt
uLQS} hd £:! Ln\s) A.Lﬂ LB
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where
. . (s}
“n = ;——;—-—-}- (4.7)
nlSe
and where
n
fols) o s - sﬁ) (¢.8)
iel
i¥n

Thus Ziisg will he a polynomial of degree N - 1,
i, in addition 20 the pele locations, ome specifies
the residues, we have, according 2o {3.d), zdditional

constraints on the derivatives of the lpading fyunction:

—
o~
A%
-

Z{{sﬂ) * Zéﬂ, mox Y2, ., L, N

The problem of interpolsating both a function ane its

First derivative at a set of solate s solved by the

Hermite or osculating rolynemials {1

! %
I s} = %f} Uglsd I, ¢ EE} LR ED A {4,190}
n !

wnere the functions U (s} and Vols} are polynorials
having properties similar to those of the Lagrange intar.

poiation functigns Lals) of {4.7) and defined by




v, (s) = [: - ZL:‘(sn)(s . su)] i’a_n{s;}
vn(s} v (s - sn)[tn(s}]. {¢.11)

In this case zt(s} will be of degree 2§ - 1,

if the degree of the polysomial represeating zi(s}
is greatar than cre, it fs =wot possible to synthesize
EL(S) using oni; sassive circuit elements, Since in many
gpplications it way not be econcomically or techmicaily
feasible to use active devices, we exdanine some Further
conditions on Iiisi which restrict it to be a “positvive-
real™ furction of ¢,

Tha driviag-point admittance or impedance fynciions
of pessive networks {that $¢, netwavrks contisting galy ot
Teapad resistors, cepacitors, and iaductors) are positive-
rest functions. Thet g, our ‘spedarce lvading ?uﬂﬁgfeﬁ
2ust be @ positivao-resl fungtion ¢o be physically realiz-
$5e 2s & deiving-point iupedance. & nurher of ansliyvics!
properties of 4 positive~veel fuosgtion can te derived
froe {1y definition. The most basic snd signifi-

Cant ones &re suvmarized fn Tiable 9 for comveniente.
Note that {4) fn Tedl: 9 restrices the degree of the

2olynomial that can be used to represent EL{s} te ng

§3
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greater than first degree. However, I,(s) wey be 2

reticasl fuaction »f §,

3 (s} = §+~% s W 3 L S PR 1)

uhigrg § ¢ @ # 2 « R &f z&{s3 i reguired oniy to S¥Lisfy
(4.1) and p ¢ ¢ + 2 = 25 iF ft 2Vso setisfisg (2.4}, s
gither case, if ztigz 15 to be positive~real, {p - ¢F < 1.
The coefficients &, %, . . . , 3, 26 b, bye < . o0 B
wey be found by substituting (8,12} fato (4.3} and (4.8)
anﬁ'satving the vesulting syster ofF Yineav equxziﬁas for
the coetfficiants. '

E peiessary condition on the vilyes I, that cea be
interpotated by postsive-rest functions hat bees devised
by Youla snd Satto [¥7] tased on energy c%nsiﬁerﬁtssﬁs.
tﬁr,aaaétti@d i$ t’”‘ the "Nevalinna-v/ick™ N x R Heewltfan
setrix {the sster 1Sk cenctes complex ctriupatel,

b
L4 3

%

%“ giﬁi

g

aust ba sonkagative fefinite, that iy,

xTax > 0 (¢.14)
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for all vectors x. They further show that this condition
is gsyfficient if the s, are distin_.t and in the right hzlf
plane, f.e.,Re s,>0,n=1,2, ..., N. This would
fmply, however, that the loop transfer admittance furction
containe active sources, which 1z fmpossible. Unfcrtunctely,
necessary and sufficient cunditions for the existerce of a
pecsitive real interpolating fuaction, both with and withcut
the derivative condition, do not appear to be avafliabia 22
this time. The development of a critericn for the lcadirg
function to exist and %o he positive real is-a challenging
problem for further research.
4.3 Time Domain Synthesis Applied to the Desion of a

Pulse Simulator

One application of loaded ioop antennas designed to
radfate a specified wavefors is in tne simylation of>the
electromagnetic pulse (EMP) generated by a high-altitude
nuclear detonaticen. The pulse shape reguired can be
approximated as the difference nf two damped exponentia!
functions, one having a very short time constant which
determ‘nes the rise time of the pulse and arother having
3 iong time constant which determines the rate ¢f decay
of the pulse. A tyrical IMP weveform [13] can te exoressed

as

i
(24
[#F]
(ad
L)

DAY -3
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where

S e A e B AR P A

a =-2.0 x 10°
8= -2.6 x 10°

The valwe of E° is a constant, and for the purpose of
calculations has been set to unity.

First, we wish to specify the gererator output V;.
For the pulse generators in comeon use, it has been found
that generator output can be accurately represented by a
step function with a finita rise time. The cenerator
rise time and that of the wavefora to be synthesized are

chosen to have the same rise tiwe so that in the Laplace ;

donain

(s) e fr - o8t} . B (4.16)
s(s-5)

where 3 = 2.6 x 10°.

in the far fielc¢ there exist only two components of
electric fleld, Ee and Ec (cf. Figure 27). The area of
primary interest for cobtaining the desired transient wave-
feem ‘s ~w2r the axis of the 1000 within a cone angle of
sbcut 307 from the 3xis. The ranges of angles & considered

dre therefore

st

O
~4

>- 1.’"’.«

ol iy "'-“:’.b!e C()p/




Figure 27.
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0 <% 30°

{A

and
150° <@

X

180° {(4.17)

On ths leop axis cnly the n = 1 mode rantributas to the
currents and for the narrow range of angles considered,
cne way make the simplifying assumption that the fField
components are coupled to only the a = 1 Fourier mnde of
current on the loop. That is, we assuwe that other modes
of current on the loop do not centribute significantly to
the far fields radiated on and near the axis of the loop
antenna.

We wish to find the electric and nagnetic fields
generated by & prescribed source function {(geacrator} and
the resuliting induced currencs on the Yoop. These vield
components are essily obtained with the help of the
sagnetic vacter potential, wilch s {cf. Figure 27}

) g %

My, 5 @‘Sk
e G ORIER Iy T {e.18)
&y R

Tie complete solutfon Ffor the ficld compenents s obteined
by using vector differentisz} operators with (4.18), An
expansion for the vector potential in spherical harmeonics
i1s derived in Appendix € for an srbitrary cbservation

point in space. Thig solution is in no way restricted,

W R AT Al




and negr as well as far fields can be obtained. However,
for the case being considered, considerable simplification
is possible with no loss in generality if one considers
cbservation points to be in the far field.

“he electric fleld coaponents in the far field ave

glven in {5] for several wodes, and specifically for

gode n = 1,

g4x gg  Sr{-isb/c sin @)
a1 - jI,/ebn <jsb/c sin 8

Eg ®

cos & sin ¢

{4.19)

Ji {-§sb/c sin 8) cos ¢  {4.20)

whevre

-}Viub aST7c

{.29)
ﬂx‘ne r

For the rance of € near the loop axis at @ = J, {4.19) and
(8.20) roeduce to

v e srie
sjshosing Yo et
24c 3, - jitlvbn r (4.22)
]
v v/
efsb cos $ S efr ¢ A
2wg a; - jZL!wbn r (§.23)
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For convenionce we will set ¢ = 0, factor out the time

srfc

delay & y and drep 211 other unnecessary constants,

exhibiting only the remaining depencconce of Ee on s:

jsvg(gb

: (4.24)
ai(s) - 3T, (s)/br

Equation (4.24) shows that the radiated field is propor-
tional to the time derivative of tne current. For node
n =i, the partial fraction expansion of the adwitiance

transfer function is

b (4.25)
@« JZ febn 1 5 -8

'
3

Substituting (4.29) fate {4.24), we have
_ R,
By v is Vols) &L e (8.26)
i 5 . EH
uhere the si correspond enly to »ode n « 1, Thus, it is
sgen that the effect of spice is to diFferentiale the
curreat since the far fleld transform 1s Just proportional
to the current transform ayltiplied dy s,
The functional velstionship between the ehove quan-

ttties it descridbed below:

161
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Zantzi

e aena e,

TR Oy v B A ; e RS ———
i ";?5' ) T T
Rémittance Space
Cutput = Transfer x Transfer «x gzgg:?zgr

Function Tunrtion

Using the results of {4.26) and (4.16),

RI
Ee = L ! £ (4.27)
ToRs - s (s - 8)
T PR
i ‘ + “ (4,28)
(s - 8) s - 5§
5 ~ ~8Ri/7{si - 8
&1(8)-3Z, {3)wbn (s-8) i s - 5
1 4.29)

when the impedance loading fuaction is vestricted to
be of tha cne- or two-elewent king, considerable siwplifi.
cation recylis in the synthesis. In the followiag, stten
tion 15 focused on uniforwly distributed reststive end RC
networks. This choice s wade for simplicity and becacse
résistive and RC netuorks ave frequentiy encountered in
high-frequency civcuits, Since the complexities invalved
in gemersl RLC syntdesis ave much greater, we ligit

ourselves to & few basfc, siaple, and usefi’ technigues.
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The radfated fields of the unioaded loop satemns do

not app2ar similar to those of an ENP waveform due to the

marked osciliatfons in time. One way to modify the radi-
sted fields is to add resistive loading along the structure

$C &% to reduce the effects which cause the oscillations.

R R P RN

If the structure is resistively loaded so that Zt(s) »

RL, then as the loading is fncressed the poles in the

WA o Kl ARSI O W MAERGT 3T ko e g

first layer (see Figure 12) wove generally in the -ob/c
direction, indicating that their contributions in time
attenuate more vapidly. The behavior of the gnlosded
Type I pole for mode n = 1, 1ecatéé where - 5/c m» 1 close
to the «b/c axis, deserves special attention., As the
loading s increased, this pole woves on & curved arc
dewn vo the -ob/c sxis, at which point a double pole is
forned with its conjugate pole. As the Toading s
further increased, this double pole split: . one pole

moving to -=, and the other toward zero along the ob/c

axis. This behavior iy completely amalogous to that

obrerved a5 the vesfstance s increased ip @ series

resonant RLC circoit. At the pofnt where the Jouble pole

C A P L g

first 1s formed, v refer to ile Yoaded cntenns as being

critically dacped,
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In the following, we examine several pussible approaches
toward the synthesis of a doubla expenential wevefors (&.15),
The problem might be considered as representative of the
general synthesis problem. In particular, we encounter cer-
tain limitations and considerations which should be common
to any synthesis problem involving the loop antenna.

The approach taken here is to force the Type [ pole to
be the synthesized pgle. Since it will have a Yong daxping
constant and since the loading aenerally forces the other
poles to have shorter damping constants this pole should
dominate the late time response. With the observation point
aiong the loop axis, we consider only the n = 1 wmode and
observe it in the far field. Finally we restrict our con-
sideration to simple Toading functions involving only resistors
ind capacitors.

We begin oy attempting to specify both the pole and its
resigue. In (4.15) the values of the residues are equal, and
the requivesment exists ¢tz specify only one remaining pole in

the sur (4.29) which we call s Lot si be equal to the

1
coefficient o in (&.15), i.e., the pulse decay constant,
s; « «2.0 x 106. The remaining task then is to equate resi-

dues. From (4.29) this requirement is wet if we let

4

!'1 - - * (6.30)
3.5, 8,(3) - §2,(3)/bn

3R

143

104

U SO e



e

where the impedance loadirg function Z, {8) is to be determined.
Kote that for the reguired zere of the transfer imped-
ance fonction, it is also true thet

8,(sy)- 37 (sy}vbn = 0 . (4.31)

Solving aquation (4.30) for ZL(s) we obtain

o (e - 55 . \
ZL{E) = fvpn \——~§§-L— - :1tsi} (4.32)

where ?; is the value of the residue of the admittance trans.

for fyunction. I we specify a series RC network then

1

* Fy ® . (&,
cL\s) R ¢ < {£.33)
From the vesidue condition,
' . 1 .
Q‘ . e Y {4.348}
ajisy) - =
Cs‘

Substituting ($.32) into (4.32) #nd egquating to (&.33}

R » "cl:i;' v jubn (&i(si) - Ef;?)(é - s]') - a,‘(ak {(3.35)

105
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Similarly, substituting (6.33) into {4.31) yields

?&E(R + -——-»ési)s a,is}) (4.36)

Thus we have two equations with two unkrnowns, which can be
soived for R and C.

Solving the systewm of equations (4.35) and (4.36) gives

1,8 .2
AT
C s ! - {4.37)

Jxbn {'(s - sylat{s)) # i(s") - &(8)]

ang

R e agqaﬁa‘(si) . ?%? (4.38)

The solution expressed by (4.37) snd ($.38) s theoretically
correct; fa practice it is ar reaiizable with passive ele-
wents siace Che dengminator of C is anegative, whereds (he
nyseretor s positive  Thus specifying Soth the pole and its
residue yields an unphysical solution.

One sees thal the reguirement that the residues be equdl
arises from (§.15) beceuse the response st t » € should oe
zero. Since the short time constant exponential s provided

by the source end the longer time comstant ~qmes from the

106



antenna "ringing down,”™ and the waveform shape during the
cransition hetween the rise and decay is not critical, one
should be sbile to obtain roughly the desired response with-
out specifying the residue of the pole. Accordingly, three
additional cases weve selected where the pole locatiun was
specified to yield a decay constant ecaua! to the value of a
specified in (2.15). The first case used a nurely resistive
1oad of 4944 4, in the second case, 3700 and 66 uf capac-
itance were uysed; and, in the thivd case, a 100U resis.
tance and 399 uf capacitance were used. These cowmbinatiors

were chosen by reguiring Z isi) = $944 ¢ $0 which puts the

L
pole at the desired position. The time domain rosponrse for
each case is plotted in Figure 28. In the figure, the thase
in each cise is simost Jdenticael, ay expected. However,

the decay tiwe is much shortar than the desired value. To
see ihat this affect is indevendent of both the genergtor

escitation pulse shaps gnd the loading, the steo functiow

response was compute”? end s shown in Figure 2%, The simi.
Tarity of the regoonse in e3ch cise 1oy vae Lo the con-
clusion that it is a ferp of the 1000 transfer sdeittance
&t £ = 0 which causes tde difficulty. Recall that the
unloaded louv ftransfer Twoedance “ynction has & polte st

$ =« O which translates to ¢ 2evs in the loop sdmittance For
both the loaded and tae unloaded case. TYhis transmigsion

evt tends to cancel the synthestred pole st ¢ » ¢!

1wy
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which ts clese t¢ the origin resuliing in a very decreased
late time response.

This zero arises, of course, from the combined ef.
fec? ¢f the remaining pales of the loop which have been
unconstreined. Hence, thefe effact in the Tate tixe re-
sponse is not negligible as was eoriginally assuaed.

Since a,{s) has a pale 4t 5 = 0 then for low fre-
quencies the loap tiansfer ifapadance is capacitive., Singe
the uhloaded loop i§ passiv., this eguivalen? cirguit ele.
went must be cositive. in order for losdinag to dDe cholen
£6 a3 to cantel the pole of a,(s} {(f.e., the rero of the

admd tlance transfer functiaal, I 13) would have tn cancel

o

4

the low Freguency tehavior of &n§$§. which would reauire 2
nan-ohysical cegitive sspacitenge.  Hemce, ft i3 rot
pessible to cancel the 2erp in thy sdwitisnce isaasfer
function by usiag passive lcading.

T6 test the velfdity of this expignagon for the
puor tate tiwe Bakgvior, 3 numericel euferimEnt w3t oons
ducted to deterwine 1f it was nossib’e to eliminate
the zere in the adeitiance transfer functice. Aegovrds
tngly tAe generator sutput wivefors was wodified to the
time favegral of the original excitation, which iatvos
cduced gnother FEoior a¥f 1/ {n {he transtorm dosais so

g €8 cancel the rerd in the transfer oidmittance 3% 5 »
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This, of course, introduces a ramp in the time domain
output of the generator but fulfills our requirement
for an additional pole in the denominator of (4.27).
The resulting time domain response is plotted in Figure 30.
The similarity of the late time response to the desired
doudle exponential confirmed the conclusion that the zero
in the admittance transfer function caused the previous
difficulty in achieving good late time response. The
integration, however, fyrther dearades the early time
response.

SinCce good early time response was obtained with a

generator frequency dependence given bv

-2
s(s-2) (4.39)

vols) =
whiie 9ood late %time domain behavior was obtained with
the ‘regyency dependence
-3 -
‘l‘(s) = e
0 s¢{s-3) {é.40)
one might speculate that perhaps a good overall approxi-
mation ¢ the desired response might be obtained by the

svcitatign

g ;
¥ Avazfsb.’s Cop
y
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Ve(s) = =B8(s+1)
0 sZ(5-8) (4.41)

which has the desired high frequency {early time) behavior
of (4.39) and the desired low frequency (late time) be-
havior of (4.40). That this 1s indeed the case is seen
by noting that the responsc of (4.41) is gbtasined by super-
positicn ef the responses due to (6.39) (Figure 28) and
(4.40) (Figure 30). However, this approach (i.e., modify-
ing the generator wavefora to produce the desired response)
runs counter to the objective of synthesizing the desired
response by loading the loov. It appears, then, that
althougk: we may be able to synthesize the pole pattern of
the luop for a finfte number of the poles, we may require
& more elaborate tregtuont to Quarantee thst the poritcign-
ing of @ finite number of the poles by impedénce Jo2ding
does indesd lesd to the desired tiae dompin wavefcra.

The complexities introduced by the infinite aumber
of poles and the appareant late time divferentietion of
the decaying waveform due ty 2 rerp in the admifttance trins-
fer fumcifon pose & unique end difffcult set of coaseraines.
Tids is a prodblem cutside the scope of this study but

uffers interesting possibilities for future research.

13
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CHAPTER V
COMCLUSIONS

The objective of this research has been to develop some
fusdamental techaiques for he snalysis and synthesis of the
resgonsi: of a loade: joocp antemna. In the past, the time do-
uain responze for sucii a problew would be determined either
by ¢.ae harwonic aralysis coupled with Fourier faversicn,
or by direct time deaain solution. With the addition of fm-
pedance losdiug, considerable effort would then be spent re-
calculating the entive response of the leon satenna without
waking use of any of the information about the response of
the uvaloaded antemna. Use of the singularity expsasion wethod
(SEH), however, perwits one to systematically exzmine the
¥tfects of lozding using the solution for the unloaded Teop
antenns.

The cbservation that the solutisons of electromaonetic
probleas sre anelytic functions of the com:lex freguency s
except st singulavities forms the basis of the SEM and p.v-
@its one to use the wany powerful thoorems of comples verie-
bler to wove efficient’ ' represent the solution. The result.
ing tiwe éauéﬁn rasponse vepresentation is & superposition
of Jdumped eaponentials whose complex freovencies corvespond

to s-plawe pales of the admittence transfer fuaction. These
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TI18E avd determifindg (voa tne fapedance Toeding aad thE on-

Toaded admittance traomsfor function. Thus, the advaatage

of the singularity expamsion technique is that one can sepa-
rate and characterize bastc attributes of the structuve only
ence, and the tiwe domatin rosponse for various icadiangs and
excitations can then be easily determined from the structure's
characteristic behavior.

In Chapter [1i, it is shown that s-piane contour plots
of the magnitude and phase of the unloaded {mpedance transfer
function of the lonp permit one to readily determine the tra-
Jectories of the poles as loading s added to the structure.
Furthersorc, the observation that the loading cun be inter-
preted as adding a feedback path to the admittance transfer
fuaction permits onme to use the root locus techmiques of
control systems to further aid in the detersinstion of the
pole aoveweats with iacroased loading. Sinte we are dealing
with an antenna that is o distribyted pavameter system, the
conventions) root locus techaique was generalized so as to
be appiicable to a system with a countably infimite number
of siagulerities. The generalized root-lecus techanigue pro-
vides & vaiuvadle tool for studying the effect of varying the
fwpedance losding over a wide range.

The synthesis of time douain waveforws by impedance

loading has beern considered fa Chapter IV. [t was found that

15
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the required condition on the imwpedanc. loading tc locate

2 pole at sny point in the complex s-plane f§s that it tater-
poiate the ismpedance transfer function at the desired pole
frequency. If the residue at the vole is a'so to be speci-
fied, the derivative of the impedance function also satisfies
&n interpolatory constraint. These conditions may be satis-
fied by Lagrange or Hermite interpclating polynomials, res-
pectively. However, if one is restricted to passive loading,
the loading functiow wust be a rational function of s. 2
necessary condition oa the interpolation comstraints is given
for the vealization of passive loading. A& sufficioncy con-
dition for realization with passive elements is apparestly
lacking 2t this time however. Sowe sipn’a z{{empts in Chap-
ter 1Y to synthesize a radisted wavefora consisting of the
sus of two exponential fuaetions were only pavtially succe-S-
ful., The difficuities seewmed to arfse from attemuting to
contrgl an infinite numboy of poles by losding and from the
presence of 2eros in the output response due to the admittance
transfor function amnd the free space transfer function.

In suomary, this rescarch was directed towards siwmpli-
fytang the understanding of impedance loaded loc, antennas
using the singularity exparsion solution technique, On the
basis of the results of this study, several recommendations

concerning futurs resesrch are suggested. Furthe. study
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is needed to determine what constraints exist on the
realizability of passive loads. Alse neaded is an approx-
imate theory for treating the invinite nusber of poles

of Type III. Possibly a transmission line model wouid
enable one to factor these poles out of the adeittance
transfer function enabling one to work with 3 few poles in
partial fraction form, the rast being absorded into a
transcendental function representing the transmission line
approximation. Hopefully, such an époroach sight lead to

4 better understanding of the constraints on the reatizabil-
ity of time domain weveforas imposed by the structure.
Another approach to synthesis might involve optimization
teckniques to choose the lodding so as to wminimize the error
between the desired response and that actuvally obtained from
the antenna. Here the shiftaed poles would 6t be specified
but would enter the calculations only as a means to (ompute
the time domain response. Finaily, an interesting ares

for €future research is in daveloping efficient ways to han-
dle non-uniforr and point toading. In the case of the Tesp,

such leading wnfortunately couples all the wodes together.
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RPPEKDIX A
DERIVATICON OF THE INFIKITE PRODUCY
REPRESENTATION

Weierstrass' Thecrem for infinite products [19] requires

dcrivatives with respect to s. in the following, it is nota-
tionally convenient to use both the wavenusber k = -js/¢ and
the Lap. ce transfork variable s simyltanecusly. Thus, for

example,

dagls) da3, dk -j da,

— (A-1)
ds dk ds ¢ dk

Except for n = 0, 3,(s) has & pole at s = 0 which we wish to

eliminate. Hence we consider the interwediate function
Fals) = sa (s}, n v 81, 22, . . . (A-2)

which has only zeros in the finite complex plane and hence is
én entire fuaction.

Ke now consider the logavithwic derivative

fals] _ ap(s) + sag(s)
£als) sa_(s) (A-3)

which 1s meromorphic. If this function is bounded on a set

of contours €, enclosing the poles. them an infinite product
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representation exists [20).

Recall that

2
« Xb _ N .
T Fnﬂ * Kn-l] i *n (A-4)
where the Kn dre defined as
Ko = L 1o b F, (kb) (A-5)
and
. [na na
Kn ® K_, * -}[!\o B ) 1D Jec,-F, (kb) (A-6)
The function Fn(z) fs defined as
2z
Fo(2) @ %f [J,,(z) - jﬁn(z)]dz (A-7)
]
and the constant C“
%
C = | 4, + v-2
.'o (A-8)

In {A-8), hb and Io gre wodtfied Bessel fuactions, v fs

Euler's constant, and z « ~gbs.
£

The function in (A-7) Fnizl can also be writtea in $ntegral
fova as [21]

(e,n-
Flz) “‘ifj I RELLLLELLY RO (A-9)

Next we derive a recursion formula for the derivative of

19

:
!




i X e

Fu(z). From (A-9), we have

. 2z n
. o 3 . ine - (n-1)8
Fag () = Fy tah =g [ f [ 302 stné - (n-1)0]
o o
30z sind-(n+1)e ]@az (A-10)
22 «
- ing-md -38
_%;j-f . j{z sin )[e «eje]deéz (A<11)
0 »]
g2 v
} ~jle sint-nd)
.;‘f f e sin2ddde {A-12)
e ©
2 r & <
E «§(z sinB-na)
‘% g";i e ae | Az {A-13)
0
. o2 2z
] j‘ <J{z sind-m)
e ¥ ¢ &
2«0 (A-18)
0
k
] ‘ -§fz W -
A f [ Tl “‘”_,m] e (A-15)
0

Tategreting the second tera yields fimally
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N i, % RO i i v —
i
%

£ (2) - F (2) .% - <J{z sing-n8)

nel n+l ) ds
. 0
4]
1-{-1)
* e 18.16)

Uifferentiating (A-9) with respect to z, we have

v
-§{z sine -ne)
Friz) - 4 !e T e (A-17)

which upon comparison with {A-16) yields the desired recuss’on

ety s

forwuias,

Faayfald - Frop 2} = F o (z) + - {A-18)

Using the Fundamental Theorem of (alculus with (A<7) we can

b, Sl S DA T T TR P T 48

altevnatively write

: F { - F s O (2) e [ 2
| “.I\z) "“iz) pl2d ¢+ Jo {z2) e
4]
1-{-1}
- (A-19)
21
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B = S - .

We may now return to (A-3) which we write as

fris) § a;(s)
s . %
in(s, $ apls (ﬁ"zﬁ)

Differentiating (R-4) with respect to s we have

* u:"—i "b;[’ ] kb | 1 ;9
ULl I ) LNOR S SRS 1 R Ke

nl ne
¥ e ﬁﬂ - - K
k<s kb " | {(&-21)

%hél‘@
(s) (s} e-b by o £ qemy]
tals) ¢ RY {sje-b|E kbh) » B &b
nel nel | 2ne2 2n-2
» =bje fkb) -~ F {kb) = F {kb) -
Znel 20+l dn-3
¥ (zs)] (4-23)
rd. IR j
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where (R-18) hes been used in (A-23).

Using the asyaptotic espension cbteined by Umashankar {8],

R* (s} ¢ k' (s)] = —Dme  -i(2KkD - v74)
i -1

3
*
=
t
o
»”
o
o

so that finally, we mive

1 T N . .
lis |-}y -2k 4
kbew | K {s} « ¥ {s3y ® L CEISERET g .
) X A+l ﬂf? i ¥ Tk ilgyz§§
From {R-6), we have
R'{s) = «b F_ ' {&r) S T fa.28}
8 W o - - o :
'y B : 3
v of f (kb = F ik}t! ’ X
2a-1 USSR § {A- 87}

Frem (8j, fur 1srgé‘va¥ué$;ﬁ? ko,



T

: £ £ - - : -
: [ H ~. )
H S X, < ! o s by X
: ~—— . o g : -
H % ]
p
: (4] 1
1 st i = e
H ¥ — P
. o ..mlf [RF)
R i - ® Lo . )
- ' m b - AN oty s b A .
LN 4 mﬂ( 5 d e scmmanm iy
O - EY) -
I S 7 L 4
S o sk -
-] ' 33 3.0 3
S L% %
ol o » *
ket | o} o
.‘MJ \;ﬂ.mftc ﬂl.e £
oo — 3 o
a N -t Pt [ IRV o
N C e . 4 A
H o4 + : 5 -
T ey ) . N
ey ) e, p2 ~ - W & o
L (-3 L2 &1 e e wk w
e o W eI ¢
: 4 3 % s Fod “
i S s e .
Ve, A ‘...i» 2 ¢
-~ \_“..u o e Y 5yt . VU
. & (4 L
: #2 v L3 4
! y P » > I
h 3 ja o g
{ ,
- ..lll'!...- o =7 ——r ,mu 3 > *.c.\...f'? o _\\t
¥ e ...l.\% [ &) A -y =
w pusn W .03 LAY m\uﬂt
: ~ ’ — s E A . L
- £ R I A v w 4N
-7 4 ~ — K
L..,m -
¥
o,
B PR R ®
® 1 &
< L Rl
0 H Aalire

&3
<




o e LR AT PPN PAIRY W R i} N TSN

Ypeping only the dominant terms in {(£-307, we have

Tim a‘{. Y = ;i& . !ﬁ{kbz + j(‘l)ﬂ i gg
kKbvea 7 < - ‘% -
-j{2xb - =/8)
e {R-31)

Therefore {£-3) reduces to

tim Tals) 1
Y hew fn{SE e
- -3{2kb - =74}
R e TR AL }
. 3»2 « V/=1nkb # j(-\}% 2_?_2_ e
’ kb f‘l}”4: 'y -3{2kh - wid}

(A-32}
taiy fumsction s bouaced in botw the Teft and right s-planme
as t-= 3and also on & tircular contgur which passar hetween
the peles of f (s) which are the zeros of a,{s).

Thng, the product expansion of F. (s} f4 given by {20]

RARRAGIE

rmion o




whore

f;(ﬁ) 1im

.'i:

f,0)

»
L3

+0

0

“

R 2
™ OF %“‘b) Kne1 * Kaoy) ¢ 2
[1 A 2 2
nal * neyf ¢ ELE% Ko -
2.z -1
ETQ. Kaey K*»ii - af n ‘
; A= {R-34)
{wig 2 1
5in? : '
R « S ¢ " i
. ;;k% Fam 0 K i 2 18 anas)
3 Kol 0}
-n iﬁ j .
» ﬁ%\ e T
o 78 “n {A-38)
-5 FL(0) (4-37)
&n
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2 reeainyi WAt

(o} - F {0)] « o (A-38)

R B 2

en-1

Finally, wve have that

(A-39)

s¢ that combining (A-33) - (A-39), we have

fals = sa,(s) = b 5 )

2 . gi? e3/Sni 440 {A-40)

Thus, the ‘nfinite yroduct representaticn for a,{s) fis

By 4
v | - (dgi
a,(s) T oy 4N 5 .
" 2y i / e\, feal . ? § - \ IATE
n ii‘oi Y !0\ b “a i'§§ "&;ﬁni) &

{a.31)

Turning to the representation of a (s), we noie thay

aois) has 4 2oro €t ¢ ~ 0, 30 wve consider thy function

ot
23
~¢
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A-42
() . (A-42)
The logarithmic derivative is
fo say{s) - sayls)
—— w R-43
0 sag(s) ( )
L
ao(s) S (A'A‘)
Fros (A-d4), we note that
where
S & 2
Ry © VMK ABIlhp)* G - F,lkb) {A-36)
Divferentisting (4-45), we have
sgls) = = |0 & ¢ Wb K (&-47)
wagre
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U] . - N k4 =

Ky = -b Fylkp) (A-88)

« -b| Fy(kb) - E.(kb)
"L 3 (A-49)

The asyaptotic formulas from [8), yield

!
! -j{2kb-v/4) ;
lim « kbj = n {kb) ————e
ibee 2008 R @
{A-59)
kb v | we -il2kb-7/4)
. In (kb) - % T e
{A-51)
and for the derivative :
]
.5 | 1o ~3(2kb-v/3) "
HOEER zin kb | e '
0 B ¥ 2\1 skb  °
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-1 ~§{2kb-wu/4)

e - e (A-52)

Al wa b -3(2i
. b In kb et = §{2kD-2/4)
¢ P PN (23kb-1)

{A-53)
On keeping only oniy the dominant terms, we have
e a'(s) . - -§{2kb-=/4)
kbow 20(8) gbt e
(A-54)
Thevafore
Yig " e [ zlo kb . k -§{2kb-e/s8
kbew ag(s) N 3‘ ~ e
-1
1
|ozln kb e -3{2kb-=/4)
kb w "\ <kb e

{A-55)
30




This function is bounded on & circle of radius K attached at

the grigin and passing between poles in the asymptotic layer.

f.(s)
Hence —fz—T is bounded on a sequence of such circles R, en-
s
closing p poles. We now need the value of
fa(e) - lim ‘6(5) 1
510} TON T s (A-5¢)
From {(A-55), we have
f500) liz Lo{bky e kB K)) | s
£,(0) kb K jke J
-1 Ko}
7 c i
K](O) (A-58)
But
_ . f 8 a
and
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K;(ﬂ) = -b| Fy(0) -~ F3(0) = 0 {R-60)
s¢ that

falo) 0 {A-61)

fa(0)

2ad we have finally,

< s/s

fF (s) = fFf(0jpmj 1 -2=—)e
° o " So1 (A-62)

where the produce is over all the zerns of a,{s) except s<0.

Since
. lin  #g(5) lim  kbKy
LR S T (h-s)
' «j % K](O) (A64)
..-b; r . a 2
ce U\o 5*) 20 g) ° C1 (A-65)

we “gve finally,
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In summary, the infinite product representations are
sh
5(2"

) sls
nzK“(O)Q o) e M

; 1 a
‘ a8}

» 0 (A-67)




APPENDIX B
CALCULATIOR OF THE RATURSL FREQUENCIES BY THE WETHOD
GF MOMENTS FOR YHE n = O NODE

Pt NN

Yhe mothod of moments solution for wode = 0 requires
only a J¢ component of surface current which is ¢ independ.
ent, By symwetry, there exists only a ¢ component of
cagnetic vector potenmtial which is also ¢ independent. The
scatterad electric field fs gliven by

ES w ol k2 v 0w . ) & (8-1)
duuye

Because of the ¢ independence, the & coxponent of the

scatteved electric field is

u.‘;iii.. -l
Ee juug  © (8-2)

uhere the magaeti¢ veqtor potential 15 given by

=

-JkR

¢ I (') ERESLE L ordetady
¢ K

‘ | ‘-
¢ 4y

2o 2w
o 0

(8-3)

and where



o=t

iz g A,

R? » |r « £'|2 » 2a%{1 - sin ¢ sin ¢’ - cos ¢ cos ¢* cos ¢')
+ 2031 - cos &*)
+ 2eb(1 = 205 ¢')(cos ¢ * cos @') (B-4)

and

p' « b+ a cos ¢

The coordingtes ¢', v, and ¢' are definev in Figure 1.
Since the fields are ¢ incependent, ¢ has been set egual to
zero in (8-3) and {B-4). The singularity occurring in
(B+3) when ¢ = ¢° and ¢" » 0 (f.e., R » 0) 15 difficult to
handle {n & numerical solutfon. Accordingly, we extrect
the singular part of the integrand analytically in the
fellowing.

Considering the integraticn on &' first, we write

the disténce fream the source point to the field point as
Ro(B-Ccos e)/? {(8-5)

whore

B« 2a? - 22 sin % sin ¢' # 2b° + Zab{cos v + cos ¥')

€ » 2a% cos ¢ cos ' ¢ 2% ¢ 2ud(cos 7 + cos ¢') (B-6)




so that {B-3) becomes

2w
A¢ » 2 f Jé(b')(b ¢+ acos &') 3
0

\A

]

H o~ Jk(B-C cos ¢r)t/?
f cos &' de¢'} dg' (8-7)
° (8 - € cos 4')'/?

Consider the integral in the brackets. ¥e §solate the
singularity by adding and subtracting a term havine the

sawe singularity as the integrand but which is intecrable;

E o~ Jk{8 « € cos -::')"’i
fcﬁs (") : —— de'
(Y (8 « ¢ cos é')‘/:
' |
¥ o ik{B-C cas e )t '
v co% (@') 3 § R » ééa
{8 - € cos e')"a
¥
N ‘g cos (o') d8' (R-8)
@ (8 - C cos 9‘§"§

The first integral on the right-hand side is nonstagular

3%




ettt ik

- e e

prs

and is hence amenable to numericsl integration. The second
integral, which we now proceec to evaluate, contains the
singularity.

uith the substitution cos ' » (2cos? ¢'/2 - 1) and
the change of variables ¢' = v - 2£, the second integral

bacoues

3

cGs &' da'

{8 ~ € cos e'}"z

%/2 ,
. 2 (1 - nsin? g} e (w/2 - 1}
(8 + £)*/? -af2 (1 - @ sin? )M
. s E{) - LRI T4 T (8-9)
wie « ¢)'/ (8¢ )"

where @ » 207B¢C and K(xm) and E{#) are iliptic intecrals

of the first and second kind, vespectively [22]. Thys,

with (8-8) and {B-9). (B-7} becowmes

i
Uy f
A, s w2 J.{v'Mb * a cos v') »
$ 24 ¢
“o
. « ] R
- oo dk{8-Cocos 31T
¢os ¢ - - | 32’
1/ 1

f*o {8 - € cos &')

-

o g
RN

P R R

Sl




& [m) IR 2&22’5{&? P (B-10}

The term involving K(w) is still singular since as v
approaches o', m tends to umnity. Using (5-8), #we rewrize

o to exhibil its cependence on ' expiicitly:

o« 2 ¥ ces ' ) (5-11)
FeGcos ¢' -4 siny'
where
2« 7+ qab cos ¢
£ w &3% cos v ¢ dad

Foe 263 # 80 ¢ dab cos

G = 28% cos v v dap

Hoe 287 sin o ' (212}

The singuiar integral of intarest ig

o - -
u . . A . R ?’1 N
-2 J, 05" )b+ & nos ') & ,-Z A (=) a.'
' : 14
er . (g » mhl 3
(8-11)
18
e 4 - & PG
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The order of the singularity may be determined by evalu-

gting the limit of the terms in the fnategrand as ¢
approaches »° or, equivalently, as w approaches 1. Thus

wE Have

gig, (&8 + c,)”’3 = 2{b + a cos v)

and

wne
[-3]

Tim ¢ =
o Rim} = In

- H - H ., L 2 - 1t
: » 1n{16) - In 20°-2a* ¢9sy€0SL 22° sinisiny' ;
‘ F+6cos ¢' - % sin ¢ j

3

F 2 oW g
« Wn(16) - 1a 22l l1 o cos (v v1)] {5-14)
F+#6§cos v' - H sin '

from (8~11) and {8-12). Expending cos {v « ') in a2 pouer

o N e e

series and keepiny oaly the deminant singular term from

{8-14), we have Ny

Gm) = -2 1 {1y




Ha %2 5 (6°)(b + a cos ¢r) (222101 - 2/) K(x)
VD e ¥ 5 . c)l/:

3]
0 LA oL (]
- 2 ady(e) (-2 1o - vr1) (B-16)

Ve now consider dividing the cross section of the loop into

N subsections of anqular extent

o= &2 (8-17)

b

and define midpcints ancd end points oF eack ianterval as

ip @ (0 - 1) sy

e

<
>
]

-1
w
=
t
(% ]
~
<3
b
(%]

o
3
[ 4]
o)
-
(o)
-
.
-

(e-18)

The current 1s expanded in puise functions

3.(%) = }:1 I, pa{%) (8-19}
nx
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(¢) To am €9 S0 -
p, (%) =

0, otheruise {8203

[V 2

R

and substituted iatc the vector potential. Siance by (8-2),

vector potentfal is propartional to the electric field, at

3 natural resonant frequency, the vector potentfal due 2o
the current along the surface is zerc. [f this coanditicn

is eaforced et the points ép. p*l,2, ..., N8, amtrix

results whosg determinant is zerc at the pele frequency. ,

[N

That is,

dot 1Z(sjl « 0 (2.21)

AT b e S AN a0

X VAN LA A
-, .

when 5 is a natural rescasnt frequency. The mateix 2{s)

is defined by

"]

L .
Bgd ¥ . p-dk(8-C cos o) /? 1
log = === {v'}]| § cos ¢ s - a6 |
2 n o {3 - € cos 8)'/° J
dv‘i pFn :
fowegs
1%
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(-]
a%
+

43
2 ]

)

5
o=
¢

where W{y') = © v & cos ¢' in
that the siagular ters (5-16)
integrand snd its intagral {s
{8-22) for p » n.

The Fourier expansion of

gap fis

182

w(e') | cos ¢

ca d/2
o~ Jk(B-C cos &) -

de*

(3 « C cos ¢')'/?
44(3°) El=)
alg + C)‘/ﬁ
2u{v' J{i - 2/m) Kim)

(8 + c)'/?
2 0 (lyy - v'1)] @
200 (1n £2 . 1) pen

2 Looy,
(9-22)

the above expressions. “Note
Kas heen extracted from the

added outside the integral in

the voltage across a uinfiforw

i




1 {8-23)

Using (B-22), we can write & function dependence for the

total current wkere

G N Y {B-24)

Juue
: It is pointod ocut that the tetal current is equal to the

: sue of individual current. Thaet is,

I R .
h T 3-28)

where ([ @ -LV/jwn, and the sum is the quantity plotted in

Chapter 11, Figure 10,

SN
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APPENDIX €
CERIVATION OF THE NEAR FIELD EXPRESSIONS

The electromagnetic field of a circuiar lGop antenns

with a current distributicn given by (2.37)

-y ¥®
1e) = aVy(s) .2 i cos n (g-1)

' “_9’ ao(s) a“(s)

usy be determined from the vector potential for any
arbitrary potng.
The element of vector potential dA at & point rj, 8,

¢ or X, ¥, I, Figure 27, hkas two components
dﬁx “ «¢A sfa &'

da, » dAR cos %' (c-2)

Thase may be expressed a5

"o e~ JkR
G, o == 1(¢') Smmme sin ¢’ bde'
¥ R

u -JkR
an . & -0 1{¢") & cos &' bdO' {c-3)
7 4w R

He w3y write



e L

Furthersore, noting that

e-j&&

where comparing with (f-1), we have

Yols)

“o"lni(s’

& . .gkn{¥(kR)

e e e -

to write

he{kR) = ;sg (2t+1) hgz)(kb) Ji(kro) P (cos

ie)

53 {28e1) hgz)(kro) Ji(kb) Piicos

(c-8)

(c-6)

whore h£2) is the spherical Hanke® function of order

Zero, second kind, we wvay employ the addition theorem (23]

{c-7)

The Legendre functions can further be exponded as [23)

n-d

i .
P, e D MR i) R TP
leos €) » 3 e, (oo Pale )

P:(c@s 8') cos #{e-0*)

(C-8)




where €y ° 1 for = 0 and Cy ® 2 for a > 0. This may

elso be written 23

1
! Py(cos £) = 3 LCULIVE Pl‘l(eos 8)

as-¢ ‘1+jm|)!

PP

Pi’l(cos 8') e'j'("") (C-9)

S acaemeia s

Hence, for To > b', we have

il ] '
dh. @ =2 I o300 (s
X 4y }ﬁ: n® (-5K)

22:,@ (22+1) g (kry) 3, (kb)

Ptices E) sfn o' bde', v > b

0
( 39)

Substituting (C-9) into (L-10), we way rearrance the order

of the sumssticn O obtain

~

k st
da, v —2 ¥ 1, e I (gh)
éx n

® .

Lo L (aeenni(er )} o (ks) Liclnllt

Mecw tuln] {tolm])!

IR s PN

148

RN




p1* (cos e) pi‘l(cus 8')

] j@l “j@'
e¢jn(¢-6 Me'® -e bds"

23
(C-11)

Let the inner summation be represented by an indexed term

, } «imiYi
C_ = (2. +1) 2 (ke Y| 0, (kp) LE

piug(cos e) Ping(ces &) (C-12)

50 that the vecter potentfal can be written as

; u k

, o B e [esetnel) o-ger(ae))

"‘ % gr w " '
ii cu e“jﬁ(Q“@a)hdcl (C"3)
1 Y ]

Integrating over all 3° and using the orthogomalizy of the

% function oxplies'), we obitain finally,
i o ub r
s Yo y “$(n-1)s -3{nel}s
A . s— ! < - LY 4
Sy “ s E:‘atenul ® Crey ®
{C-12}
187




Sieflarly, A, is fouad to be

Yy
0 “jnel ~§(nel
A & o2 2 I, cﬂ-l a~d Je . cn'ﬂ e J(ne1)e

(C.15)

If the vector potentizls are required for Po ¢ b, then cn

in {C~12) is replaced bdy

oy en o] oy

(ts]m])!

Pi“'(cos 8) Pé“a(cos 8') {C-16)

This completes the derivation of the rectangular coe-
panents of vector potentisl. [t §s pointed cut that the
vector potential equations (C-14) and {C-15) ave valiéd for
nger and far fieids. The electric and magnetic field

guantities zay be devived frow

o
[ ]
<

p 1]

X {C-17)

"'-jwi@lw‘ﬁ?-

&.2

4l
Tt

(c-18)

for periodic time dependence where k v _/c. In the Laplace

transform dowein, we have siwkply s «
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